MARK SCHEME for the May/June 2015 series

4037 ADDITIONAL MATHEMATICS

4037/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge O Level – May/June 2015	4037	12

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
www	without wrong working

1	$k^{2} - 4(2k + 5) (<0)$ $k^{2} - 8k - 20 (<0)$ $(k - 10)(k + 2) (<0)$ critical values of 10 and -2 $-2 < k < 10$	M1 A1 A1	use of $b^2 - 4ac$, (not as part of quadratic formula unless isolated at a later stage) with correct values for <i>a</i> , <i>b</i> and <i>c</i> Do not need to see < at this point attempt to obtain critical values correct critical values correct range
	Alternative 1:		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2(2k+5)x+k$	M1	attempt to differentiate, equate to zero and substitute x value back in to obtain a y value
	When $\frac{dy}{dx} = 0$, $x = \frac{-k}{2(2k+5)}$, $y = \frac{8k+20-k^2}{4(2k+5)}$	M1	consider $y = 0$ in order to obtain critical values
	When $y = 0$, obtain critical values of 10 and -2 -2 < k < 10	A1 A1	correct critical values correct range
	Alternative 2:		
	$y = (2k+5)\left(\left(x+\frac{k}{2(2k+5)}\right)^2 - \frac{k^2}{4(2k+5)}\right) + 1$	M1	attempt to complete the square and consider $1 - \frac{k^2}{4(2k+5)}$ '
	Looking at $1 - \frac{k^2}{4(2k+5)} = 0$ leads to	M1	attempt to solve above = to 0, to $\frac{1}{2}$
	critical values of 10 and -2 -2 < k < 10	A1 A1	correct critical values correct range

	Page 3	Mark Scheme		Syllabus	Paper]	
		Cambridge O Level – May/June 201	5		4037	12	
2		$\frac{\tan\theta + \cot\theta}{\csc\theta} = \frac{\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta}}{\frac{1}{\sin\theta}}$	M1	for $\tan \theta$ $\csc \theta$	$\theta = \frac{\sin \theta}{\cos \theta}, \text{ co}$ $= \frac{1}{\sin \theta}; \text{ all}$	$t\theta = \frac{\cos\theta}{\sin\theta}$	and
		$=\frac{\frac{\sin^2\theta + \cos^2\theta}{\sin\theta\cos\theta}}{\frac{1}{\sin\theta}}$	M1	dealing correctly with fractions in the numerator; allow when seen		in	
		$=\frac{1}{\cos\theta}$	M1	use of the allow w	he appropria hen seen	te identity;	
		$= \sec \theta$	A1	must be complet missing	convinced i tely correct v brackets)	t is from vork (bewa	re
		Alternative: $\frac{\tan\theta + \cot\theta}{\tan\theta} = \frac{\frac{\tan^2\theta + 1}{\tan\theta}}{\frac{\tan\theta}{\tan\theta}}$	M1	for eithe	$er \tan \theta = \frac{1}{2}$	— or	
		$\csc \theta \qquad \csc \theta$	1411	$\cot \theta =$	$\frac{1}{\tan\theta}$ and $\frac{1}{1}$	θ	
		$=\frac{\sec^2\theta}{\tan\theta\frac{1}{\sin\theta}}$	M1	cosecθ dealing numera	$=\frac{1}{\sin\theta}; \text{ allo}$ correctly witor; allow whether	w when use th fractions nen seen	ed in
		$=\frac{\sec^2\theta}{\sec\theta}$ $=\sec\theta$	M1 A1	use of the allow we must be completed	he appropria hen seen convinced i tely correct y	te identity; t is from vork	
3		$\mathbf{A}^{-1} = \frac{1}{2} \begin{pmatrix} 3 & -2 \\ -5 & 4 \end{pmatrix}$	B1	$\frac{1}{2}$ mult	iplied by a m	natrix	
		$ \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 3 & -2 \\ -5 & 4 \end{pmatrix} \begin{pmatrix} 8 \\ 9 \end{pmatrix} $	B1 M1	for mati attempt must be	rix to use the in pre-multipli	verse matriz	x,
		$\binom{x}{y} = \frac{1}{2} \binom{6}{-4}$			1		
		x = 3, y = -2	A1, A1				

	Page 4	Mark Scheme	Syllabus Paper	
		Cambridge O Level – May/June 20	4037 12	
4	(i)	Area = $\left(\frac{1}{2} \times 12^2 \times 1.7\right) + \left(\frac{1}{2} \times 12^2 \sin(2\pi - 1.7 - 2.4)\right)$	B1,B1 M1	B1 for sector area, allow unsimplified B1 for correct angle <i>BOC</i> , allow unsimplified correct attempt at area of triangle, allow unsimplified using <i>their</i> angle <i>BOC</i> (Their angle <i>BOC</i> must not be 1.7
		= awrt 181	A1	or 2.4)
	(ii)	$BC^{2} = 12^{2} + 12^{2} - (2 \times 12 \times 12 \cos 2.1832)$ or $BC = 2 \times 12 \times \sin\left(\frac{2\pi - 4.1}{2}\right)$	M1	correct attempt at <i>BC</i> , may be seen in (i), allow if used in (ii). Allow use of <i>their</i> angle <i>BOC</i> .
		BC = 21.296 Perimeter = $(12 \times 1.7) + 12 + 12 + 21.296$	A1 B1 M1	for arc length, allow unsimplified for a correct 'plan'
		= 65.7	A1	(an arc + 2 radii and <i>BC</i>)
5	(a) (i)	20160	B1	
	(ii)	$3 \times {}^{6}P_{4} \times 2$ $= 2160$	B1,B1	B1 for ${}^{6}P_{4}$ (must be seen in a product) B1 for all correct, with no further working
	(iii)	$5 \times 2 \times {}^{6}P_{4}$ = 3600	B1,B1 B1	B1 for ${}^{6}P_{4}$ (must be seen in a product) B1 for 5 (must be in a product) B1 for all correct, with no further working
		${}^{6}C_{4} \times 5! \times 2$	B2	for ${}^{6}C_{4} \times 5!$
		= 3600	B1	for ${}^{6}C_{4} \times 5! \times 2$
		Alternative 2: $\binom{7}{P_5} - {}^6P_5 \times 2$ = 3600	B2 B1	for $({}^7P_5 - {}^6P_5)$ for $({}^7P_5 - {}^6P_5) \times 2$
		Alternative 3: $2! ({}^{6}P_{4} + ({}^{6}P_{1} \times {}^{5}P_{3}) + ({}^{6}P_{2} \times {}^{4}P_{2}) + ({}^{6}P_{3} \times {}^{3}P_{1}) + {}^{6}P_{4})$ $= 3600$	B2 B1	4 terms correct or omission of 2! in each term all correct

	Page 5	Mark Scheme	Syllabus Paper	
		Cambridge O Level – May/June 20 ²	15	4037 12
	(b) (i)	$^{14}C_4 \times ^{10}C_4$ or $^{14}C_8 \times ^8C_4$ (or numerical or factorial equivalent) = 210210	B1,B1	B1 for either ${}^{14}C_4$ or ${}^{14}C_8$ as part of a product B1 for correct answer, with no further working
	(ii)	${}^{8}C_{4} \times {}^{6}C_{4} = 1050$	B1,B1	B1 for either ${}^{8}C_{4}$ or ${}^{6}C_{4}$ as part of a product B1 for correct answer with no further working
6	(i)	10ln4 or 13.9 or better	B1	
	(ii)	$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right) = \frac{20t}{t^2 + 4} - 4$	M1 B1	attempt to differentiate and equate to zero $\frac{20t}{t^2 + 4}$ or equivalent seen
		When $\frac{dx}{dt} = 0, \frac{20t}{t^2 + 4} = 4$	DM1	attempt to solve <i>their</i> $\frac{dx}{dt} = 0$, must
		leading to $t^{2} - 5t + 4 = 0$ t = 1, t = 4	A1	be a 2 or 3 term quadratic equation with real roots for both

Page	e 6

Mark SchemeSylCambridge O Level – May/June 20154

(iii)	If $(v =) \frac{20t}{x^2 - 4} - 4$		
	$t^2 + 4$		
	$(a=) \frac{20(t^2+4)-20t(2t)}{(t^2+4)^2}$	M1	attempt to differentiate <i>their</i> $\frac{dx}{dt}$
		A1	$20(t^2+4)$
		A1	20t(2t)
	$20(4-t^2)$ or $80-20t^2$ or $4-t^2$ or equivalent	A1	$20(4-t^2)$ or $80-20t^2$ or $4-t^2$
	expression involving $-t^2$		
	When acceleration is 0, $t = 2$ only	B1	t = 2, dependent on obtaining first and second A marks
	Alternative 1 for first 3 marks:		dx
	$If(v =) \frac{20t - 4t^2 - 16}{t^2 + 4}$	M1	attempt to differentiate <i>their</i> $\frac{dt}{dt}$
	l + 4 $(l^2 + 4)$ (20, 24) (20, $4l^2 - 1c)$ (24)	A 1	$f_{or}(t^2 + 4)(20 - 8t)$
	$(a=)\frac{(l^{2}+4)(20-8l)-(20l-4l^{2}-10)(2l)}{(l^{2}+4)^{2}}$	A1	for $(20t - 4t^2 - 16)(2t)$
	$\begin{pmatrix} l & \pm 4 \end{pmatrix}$		
	Alternative 2 for M1 mark:		
	If $(v =) 20t(t^2 + 4)^{-1} - 4$		dx
	$(a=)20t\left(-2t\left(t^{2}+4\right)^{-2}\right)+20\left(t^{2}+4\right)^{-1}$	M1	attempt to differentiate <i>their</i> $\frac{dt}{dt}$
	Alternative 3 for the first 3 marks		
	If $(v =) (20t - 4t^2 - 16)(t^2 + 4)^{-1}$		dx
	$(a=)(20t-4t^{2}-16)(-2t(t^{2}+4)^{-2})+(20-8t)(t^{2}+4)^{-1}$	M1	attempt to differentiate <i>their</i> $\frac{dt}{dt}$
	Numerator = $-2t(20t - 4t^2 - 16) + (20 - 8t)(t^2 + 4)$	A1	for $2t(20t-4t^2-15)$
		Al	for $(20-8t)(t^2+4)$
7 (i)	$\overrightarrow{DA} = 3\mathbf{a} - \mathbf{b}$	B1	mark final answer, allow unsimplified
(;;)	$\overrightarrow{DP} = 7a$ h	D1	month final answer allow
(II)	$DD = 7\mathbf{a} - 0$	ВІ	unsimplified
(iii)	$\overrightarrow{AX} = \lambda \left(4\mathbf{a} + \mathbf{b} \right)$	B1	mark final answer, allow unsimplified
(iv)	$\overrightarrow{DY} = 3\mathbf{a} = \mathbf{b} + \lambda (4\mathbf{a} + \mathbf{b})$	M1	their (i) + their (iii) or equivalent
(17)	$DA - 3a - 0 + \lambda (4a + 0)$	1111	valid method or $3\mathbf{a} - \mathbf{b} + their$ (iii)
		A1	Allow unsimplified

Page 7	Mark Scheme Cambridge O Level – May/June 20	15	Syllabus Paper 4037 12
(v)	$3\mathbf{a} - \mathbf{b} + \lambda (4\mathbf{a} + \mathbf{b}) = \mu (7\mathbf{a} - \mathbf{b})$ Equate like vectors: $3 + 4\lambda = 7\mu$ $-1 + \lambda = -\mu$	M1 DM1	equating <i>their</i> (iv) and $\mu \times their$ (ii) for an attempt to equate like vectors and attempt to solve 2 linear equations for λ and μ
8 (i)	$5e^{2x} - \frac{1}{2}e^{-2k} (+c)$	B1, B1	B1 for each term, allow unsimplified
(ii)	$\left(5e^{2k} - \frac{1}{2}e^{-2k}\right) - \left(5e^{-2k} - \frac{1}{2}e^{2k}\right)$	M1 A1	use of limits provided integration has taken place. Signs must be correct if brackets are not included. allow any correct form
(iii)	$\left(5e^{2k} - \frac{1}{2}e^{-2k}\right) \left(5e^{-2k} - \frac{1}{2}e^{2k}\right) = -60$ or $\frac{11}{2}e^{2k} - \frac{11}{2}e^{-2k} = -60$	B1	correct expression from (ii) either simplified or unsimplified equated to -60 , must be first line seen.
(iv)	or equivalent leading to $11e^{2k} - 11e^{-2k} + 120 = 0$ $11y^2 + 120y - 11 = 0$ (11y - 1)(y + 11) = 0 leading to $k = \frac{1}{2}\ln\frac{1}{11}, \ln\frac{1}{\sqrt{11}}, -\ln\sqrt{11}, -\frac{1}{2}\ln 11$	DB1 M1 DM1 A1	must be convinced as AG attempt to obtain a quadratic equation in <i>y</i> or e^{2k} and solve to get <i>y</i> or e^{2k} (only need positive solution) attempt to deal with e to get <i>k</i> =. any of given answers only.

	Page 8	Mark Scheme		Syllabus Paper		
		Cambridge O Level – May/June 201	15	4037 12		
9		$\frac{\mathrm{d}y}{\mathrm{d}x} = 4 - 6\sin 2x$	M1,A1	M1 for attempt to differentiate		
		When $x = \frac{\pi}{4}$, $y = \pi$	B1	A1 for all correct for <i>y</i>		
		$\frac{dy}{dx} = -2$ so gradient of normal $= \frac{1}{2}$	DM1	for substitution of $x = \frac{\pi}{4}$ into <i>their</i>		
				$\frac{dy}{dx}$ and use of $m_1m_2 = -1^{\prime}$, dependent on first M1		
		Normal equation $y - \pi = \frac{1}{2} \left(x - \frac{\pi}{4} \right)$	DM1	correct attempt to obtain the equation of the normal, dependent on previous DM mark		
		When $x = 0$, $y = \frac{7\pi}{8}$	A1	must be terms of π		
		When $y=0, x=-\frac{7\pi}{4}$	A1	must be terms of π		
		Area = $\frac{1}{2} \times \frac{7\pi}{4} \times \frac{7\pi}{8} = \frac{49\pi^2}{64}$	B1ft	Follow through on <i>their x</i> and <i>y</i> intercepts; must be exact values		
10	(a)	$\cos^2 3x = \frac{1}{2}$, $\cos 3x = (\pm)\frac{1}{\sqrt{2}}$	M1			
		$3x = 45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}$ $x = 15^{\circ}, 45^{\circ}, 75^{\circ}, 105^{\circ}$	A1,A1	with sec and 3, correctly A1 for each correct pair		
	(b)	$3(\cot^2 y + 1) + 5\cot y - 5 = 0$ Leading to	M1	use of a correct identity to get an equation in terms of one trig ratio		
		$3\cot^2 y + 5\cot y - 2 = 0$ or		only 1		
		$2 \tan^2 y - 5 \tan y - 3 = 0$ $(3 \cot y - 1)(\cot y + 2) = 0$ or	M1	for $\cot y = \frac{1}{\tan y}$ to obtain either a quadratic equation in $\tan y$ or		
		$(\tan y - 3)(2 \tan y + 1) = 0$		solutions in terms of tan <i>y</i> ; allow where appropriate		
		$\tan y = 3, \qquad \tan y = \frac{1}{2}$	M1	for solution of a quadratic equation in terms of either $\tan y$ or $\cot y$		
		$y = 71.6^{\circ}, 251.6^{\circ}$ 153.4°, 333.4°	A1,A1	A1 for each correct 'pair'		
	(c)	$\sin\left(z+\frac{\pi}{3}\right) = \frac{1}{2}$	M1	completely correct method of solution		
		$z + \frac{\pi}{3} = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{15\pi}{6}$	A1	one correct solution in range		
		$z = \frac{\pi}{2}, \frac{11\pi}{6}$	M1	correct attempt to obtain a second solution within the range		
		(allow 1.57, 5.76)	A1	second correct solution (and no other)		