## **WORKED EXAMPLE 14**

Variables V and t are connected by the equation  $V = 5t^2 - 8t + 3$ . Find the rate of change of V with respect to t when t = 4.

## **Answers**

$$V = 5t^2 - 8t + 3$$

$$\frac{\mathrm{d}V}{\mathrm{d}t} = 10t - 8$$

When 
$$t = 4$$
,  $\frac{dV}{dt} = 10(4) - 8 = 32$ 

# **Connected rates of change**

When two variables x and y both vary with a third variable t, the three variables can be connected using the chain rule:

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t}$$

You may also need to use the rule that:

$$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{\frac{\mathrm{d}y}{\mathrm{d}x}}$$

## **WORKED EXAMPLE 15**

Variables x and y are connected by the equation  $y = x^3 - 5x^2 + 15$ . Given that x increases at a rate of 0.1 units per second, find the rate of change of y when x = 4.

## **Answers**

$$y = x^3 - 5x^2 + 15 \text{ and } \frac{\mathrm{d}x}{\mathrm{d}t} = 0.1$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 10x$$

When 
$$x = 4$$
,  $\frac{dy}{dx} = 3(4)^2 - 10(4)$   
= 8

Using the chain rule, 
$$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$$
  
= 8 × 0.1  
= 0.8

Rate of change of y is 0.8 units per second.

## **WORKED EXAMPLE 16**



The diagram shows a water container in the shape of a triangular prism of length 120 cm.

The vertical cross-section is an equilateral triangle.

Water is poured into the container at a rate of 24 cm<sup>3</sup> s<sup>-1</sup>.

Show that the volume of water in the container,  $V \text{ cm}^3$ , is given by  $V = 40\sqrt{3} \ h^2$ , where h cm is the height of the water in the container.

60°

**b** Find the rate of change of h when h = 12.

### **Answers**

**a** Length of side of triangle = 
$$\frac{h}{\sin 60^{\circ}}$$
  
=  $\frac{2\sqrt{3}h}{3}$ 

Area of triangle = 
$$\frac{1}{2} \times \frac{2\sqrt{3}h}{3} \times h$$
  
=  $\frac{\sqrt{3}h^2}{3}$ 

$$V = \text{area of triangle} \times 120$$
$$= \frac{\sqrt{3}h^2}{3} \times 120$$

**b** 
$$\frac{\mathrm{d}V}{\mathrm{d}h} = 80\sqrt{3} \ h \text{ and } \frac{\mathrm{d}V}{\mathrm{d}t} = 24$$

 $=40\sqrt{3} h^2$ 

When 
$$h = 12$$
,  $\frac{dV}{dh} = 80\sqrt{3}$  (12)  
=  $960\sqrt{3}$ 

Using the chain rule, 
$$\frac{dh}{dt} = \frac{dh}{dV} \times \frac{dV}{dt}$$

$$= \frac{1}{960\sqrt{3}} \times 24$$

$$= \frac{\sqrt{3}}{120}$$

Rate of change of h is 
$$\frac{\sqrt{3}}{120}$$
 cm per second.

## Exercise 12.7

- Variables x and y are connected by the equation  $y = x^2 5x$ . Given that x increases at a rate of 0.05 units per second, find the rate of change of y when x = 4.
- Variables x and y are connected by the equation  $y = x + \sqrt{x 5}$ . Given that x increases at a rate of 0.1 units per second, find the rate of change of y when x = 9.
- Variables x and y are connected by the equation  $y = (x 3)(x + 5)^3$ . Given that x increases at a rate of 0.2 units per second, find the rate of change of y when x = -4.
- Variables x and y are connected by the equation  $y = \frac{5}{2x 1}$ . Given that y increases at a rate of 0.1 units per second, find the rate of change of x when x = -2.
- Variables x and y are connected by the equation  $y = \frac{2x}{x^2 + 3}$ . Given that x increases at a rate of 2 units per second, find the rate of increase of y when x = 1.
- Variables x and y are connected by the equation  $y = \frac{2x 5}{x 1}$ . Given that x increases at a rate of 0.02 units per second, find the rate of change of y when y = 1.
- 7 Variables x and y are connected by the equation  $\frac{1}{y} = \frac{1}{8} \frac{2}{x}$ . Given that x increases at a rate of 0.01 units per second, find the rate of change of y when x = 8.
- 8 A square has sides of length x cm and area A cm<sup>2</sup>. The area is increasing at a constant rate of 0.2 cm<sup>2</sup>s<sup>-1</sup>. Find the rate of increase of x when A = 16.
- 9 A cube has sides of length x cm and volume V cm<sup>3</sup>. The volume is increasing at a rate of 2 cm<sup>3</sup> s<sup>-1</sup>. Find the rate of increase of x when V = 512.
- 10 A sphere has radius r cm and volume V cm<sup>3</sup>. The radius is increasing at a rate of  $\frac{1}{\pi}$  cm s<sup>-1</sup>. Find the rate of increase of the volume when  $V = 972\pi$ .
- A solid metal cuboid has dimensions x cm by x cm by 5x cm. The cuboid is heated and the volume increases at a rate of  $0.5 \text{ cm}^3 \text{ s}^{-1}$ . Find the rate of increase of x when x = 4.
- A cone has base radius r cm and a fixed height 18 cm.

  The radius of the base is increasing at a rate of 0.1 cm s<sup>-1</sup>.

  Find the rate of change of the volume when r = 10.

- 13 Water is poured into the conical container at a rate of  $5 \,\mathrm{cm}^3 \,\mathrm{s}^{-1}$ . After *t* seconds, the volume of water in the container,  $V \,\mathrm{cm}^3$ , is given by  $V = \frac{1}{12} \pi h^3$ , where *h* cm is the height of the water in the container.
  - **a** Find the rate of change of h when h = 5.
  - **b** Find the rate of change of h when h = 10.

- 14 Water is poured into the hemispherical bowl at a rate of  $4\pi \,\mathrm{cm}^3 \,\mathrm{s}^{-1}$ . After t seconds, the volume of water in the bowl,  $V \,\mathrm{cm}^3$ , is given by  $V = 8\pi h^2 - \frac{1}{3}\pi h^3$ , where  $h \,\mathrm{cm}$  is the height of the water in the bowl.
  - **a** Find the rate of change of h when h = 2.
  - **b** Find the rate of change of h when h = 4.



$$g = \frac{15}{(3x-1)^2}$$
  $h = \frac{x^2 + 8x + 2}{(x^2 - 2)^2}$ 

4 
$$\frac{25}{9}$$

5 a 
$$\frac{1-2x}{2\sqrt{x}(2x+1)^2}$$

b 
$$\frac{1-x}{(1-2x)^{\frac{3}{2}}}$$

c 
$$\frac{x(x^2+4)}{(x^2+2)^{\frac{3}{2}}}$$

d 
$$\frac{-5(x-3)}{2\sqrt{x}(x+3)^2}$$

8 a 
$$(-2, -2.4), (0.4, 0), (2, 1.6)$$

$$\mathbf{b} = \frac{23}{25}, \frac{125}{29}, -\frac{7}{25}$$

### Exercise 12.5

1 a 
$$y = 4x - 6$$

**b** 
$$y = -x - 2$$

c 
$$y = 16x - 10$$

**d** 
$$y = -\frac{1}{2}x + 3$$

**e** 
$$y = -3x - 3$$

$$f \quad y = \frac{1}{4}x + 2\frac{1}{4}$$

2 a 
$$y = -\frac{1}{3}x - 4\frac{1}{3}$$

**b** 
$$y = -\frac{1}{8}x + 5\frac{1}{4}$$

c 
$$y = \frac{1}{4}x - 3\frac{3}{4}$$

**d** 
$$y = 2x + 7.5$$

e 
$$y = -0.1x - 3.8$$

$$f \quad y = 4x - 22$$

3 
$$y = 8x - 6$$
,  $y = -\frac{1}{8}x + \frac{17}{8}$ 

$$\mathbf{g} = \frac{15}{(3x-1)^2}$$
  $\mathbf{h} = \frac{x^2 + 8x + 2}{(x^2 - 2)^2}$   $\mathbf{5} = y = \frac{9}{16}x - \frac{1}{2}, \ y = -\frac{16}{9}x - \frac{1}{2}$ 

6 
$$(2, -3)$$

$$y = 2x - 20$$

8 a 
$$y = x + 8$$

c 
$$y = -\frac{1}{2}x + \frac{13}{2}$$

**11 b** 
$$y = -0.4x - 0.6$$

**13** 22.5 units
$$^2$$

### Exercise 12.6

$$3 - 0.8p$$

**5** 
$$25p$$
 **6**  $\frac{11}{3}p$ 

7 
$$\frac{\pi}{20}$$

8 a 
$$y = \frac{180}{x^2}$$

#### Exercise 12.7

- 0.15 units per second
- 0.125 units per second
- **3** −4 units per second
- **4** −0.25 units per second
- **5** 0.5 units per second
- 6  $\frac{1}{150}$  units per second
- 7 -0.08 units per second
- 8  $0.025\,\mathrm{cm\,s^{-1}}$
- 9  $\frac{1}{96}$  cm s<sup>-1</sup>
- 10  $324 \,\mathrm{cm}^3 \,\mathrm{s}^{-1}$
- 11  $\frac{1}{480}$  cm s<sup>-1</sup>
- 12  $12\pi \text{ cm}^3 \text{ s}^{-1}$

13 a 
$$\frac{4}{5\pi}$$
 cm s<sup>-1</sup> b  $\frac{1}{5\pi}$  cm s<sup>-1</sup>

**14** a 
$$\frac{1}{7}$$
 cm s<sup>-1</sup> b  $\frac{1}{12}$  cm s<sup>-1</sup>

### Exercise 12.8

1 a 10 b 
$$12x + 6$$
  
c  $-\frac{18}{x^4}$  d  $320(4x + 1)^3$ 

$$e^{-\frac{x}{(2x+1)^{\frac{3}{2}}}}$$
  $f^{\frac{3}{(x+3)^{\frac{5}{2}}}}$ 

2 a 
$$12(x-4)(x-2)$$

b 
$$\frac{8x-6}{x^4}$$

$$c = \frac{8}{(x-3)^3}$$

d 
$$\frac{2(x^3+6x^2+3x+2)}{(x^2-1)^3}$$

e 
$$y = \frac{50}{(x-5)^3}$$

$$f \quad y = \frac{102}{(3x - 1)^3}$$

3 a 
$$-3$$
 b  $-9$  c  $-8$ 

5

| x                                       | 0 | 1 | 2 | 3 | 4 | 5 |
|-----------------------------------------|---|---|---|---|---|---|
| $\frac{\mathrm{d}y}{\mathrm{d}x}$       | + | 0 | - | - | 0 | + |
| $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$ | - | - | - | + | + | + |

$$6 \quad x > 2$$

### Exercise 12.9

- 1 a (6, -28)minimum
  - **b** (-2, 9) maximum
  - c (-2, 18) maximum, (2, -14) minimum

d 
$$\left(-2\frac{2}{3}, 14\frac{22}{27}\right)$$
 maximum,

$$(2, -36)$$
 minimum

e 
$$(-3, -18)$$
 minimum,  $\left(\frac{1}{3}, \frac{14}{27}\right)$  maximum