

CS Programming Project Model Questions on Pre-release 2019

Name of participant: ………

Class/Section: ……………………………………..…………………………………………………………………….

 Based on Pre-Release Material issued by CAIE for the

Summer 2019 exams (This will also be used in Mock

Exams)

 100% related to syllabus

 It contains multiple tasks to design the solution, to

code and to test their solutions.

Here is a copy of pre-release material

An auction company has an interactive auction board at their sale rooms, which allows buyers
to place bids at any time during the auction. Before the auction starts, the sellers place their items in
the sale room with a unique number attached to each item (item number). The following details
about each item need to be set up on the interactive auction board system: item number, number of
bids, description and reserve price. The number of bids is initially set to zero.

During the auction, buyers can look at the items in the sale room and then place a bid on the
interactive auction board at the sale room. Each buyer is given a unique number for identification
(buyer number). All the buyer needs to do is enter their buyer number, the item number and their
bid. Their bid must be greater than any existing bids.

At the end of the auction, the company checks all the items and marks those that have bids
greater than the reserve as sold. Any items sold will incur a fee of 10% of the final bid to be paid to
the auction company.
Write and test a program or programs for the auction company.
• Your program or programs must include appropriate prompts for the entry of data, data must be

validated on entry.
• Error messages and other output need to be set out clearly and understandably.
• All variables, constants and other identifiers must have meaningful names.
You will need to complete these three tasks. Each task must be fully tested.
Task 1 – Auction set up.
For every item in the auction the item number, description and the reserve price should be recorded.
The number of bids is set to zero. There must be at least 10 items in the auction.
Task 2 – Buyer bids.
A buyer should be able to find an item and view the item number, description and the current highest
bid. A buyer can then enter their buyer number and bid, which must be higher than any previously
recorded bids. Every time a new bid is recorded the number of bids for that item is increased by one.
Buyers can bid for an item many times and they can bid for many items.
Task 3 – At the end of the auction.
Using the results from TASK 2, identify items that have reached their reserve price, mark them as
sold, calculate 10% of the final bid as the auction company fee and add this to the total fee for all sold
items. Display this total fee. Display the item number and final bid for all the items with bids that have
not reached their reserve price. Display the item number of any items that have received no bids.
Display the number of items sold, the number of items that did not meet the reserve price and the
number of items with no bids.

Q1) When you performed the tasks, you may have used constants. [2+2]
Write suitable declarations for two of these. State what you used each one for.
Constant in task 1: MinItem=10

Use: To store fixed value of minimum number of items required to setup auction, i.e. 10

Constant in task 3: CompanyFeeRate=10

Use: To store rate of company fee applied on the items sold.

Q2) Fill in the following identifier table for task 1: [2+2]

Q3) Arrays are data structures. State how do you decide size of array in task 1? [2]

At first number of items are input and validated, and then this number of items is used as array size, e.g.

ItemID[1:NoOfItems]

Q 4) State arrays you have used in task 1 (3 arrays only): [3+3]

Variable name Data Type Purpose

NoOfItems INTEGER Input and store number of items to be auctioned. At least 10 are required.

Count INTEGER To be used as loop counter and array subscript/index

ID STRING Temporary variable, To input Item ID. It may contain numerical ID like “101”,

leading zero like “001” and alphanumerical ID like “M01”.

After validation this ID is strored in ItemID Array

Data structure name Data Type Purpose

ItemID[1:NoOfItems] STRING To assign unique item number to each item using array. It

may contain numerical ID like “101”, leading zero like “001”

and alphanumerical ID like “M01”.

Size of array is equal to number of items

Description[1:NoOfItems] STRING To input and store description of each item using array.

Size of array is equal to number of items

ReservePrice[1:NoOfItems] REAL To input and store reserve price of each item using array.

Size of array is equal to number of items

NoOfBids[1:NoOfItems] INTEGER To store number of bids of each item using array. Size of

array is equal to number of items. Value of NoOfBid is

incremented by 1 with each bid of the item.

Q5) Fill in the following identifier table for task 2 (2 variables only): [4]

Q 6) State arrays you have used in task 2 (2 arrays only): [4]

Q7) Fill in the following identifier table for task 3 (3 variables only): [3+3]

Variable name Data Type Purpose

NoOfBuyer INTEGER Input and store number of buyers to bid.

BuyerIDToBid INTEGER Input and store buyer number who wants to bid

OfferedBid REAL Input and store buyer’s offered bid

ToContinueAuction STRING To input from to decide that auction is to be continued or to be

stopped

Data structure name Data Type Purpose

ExistingBid[1:NoOfItems] REAL To input and store current highest bid id in 1D array

BuyerID[1: NoOfBuyer] INTEGER To assign unique ID to each buyer, starts from 1 and

increment by 1 for each next buyer, maintain uniquness of

buyer number

Variable name Data Type Purpose

CountSold INTEGER To count items whose existing bid has reached reserve price and have

marked “SOLD”

CountNotSold INTEGER To count number of items those have received bids but haven’t reached

reserve price

Count0Bid INTEGER To count number of items those haven’t received any bid

CompanyFee REAL To calculate 10% company fee of items who have sold

TotalFee REAL To calculate total company fee of all sold items

Q 8) Write an algorithm to complete Task 1, using either pseudo code, programming statements or a

flowchart. Do not include declaration of variable. [6]

 CONSTANT MinItems  10

 PRINT "Number of Items available for sale (atleast 10)"

 INPUT NoOfItems

 //Validation number of items

 WHILE NoOfItems < MinItems DO

 PRINT "Error:Auction could not be set up"

 PRINT "Enter No Of Items atleast 10"

 INPUT NoOfItems

 END WHILE

 //Setting up Arrays

ItemID[1:NoOfItems]

 ReservePrice[1:NoOfItems]

Description[1:NoOfItems]

 NoOfBids[1:NoOfItems]

 //Enterind detals of items on auction

Index 1

REPEAT

PRINT “Enter Item ID”

INPUT ID

SerachIndex1

IsFound  False

WHILE IsFound=False AND SearchIndex<=NoOfItem DO

 IF ID= ItemID[SearchIndex] THEN

 IsFound=True

 ELSE

 SearchIndex  SearchIndex+ 1

 ENDIF

ENDWHILE

IF IsFound=False THEN

 ItemID[Index]  ID

 INPUT “Enter description of Item “ Description[Index]

 INPUT “Enter reserve price of Item “ ReservePrice[Index]

 NoOfBid[Index]  0

 Index  Index + 1

ELSE

 PRINT “Error: Item ID is already taken, try another.”

ENDIF

 UNTIL Index > NoOfItems

Q 9) Write an algorithm to complete Task 2, using either pseudo code, programming statements or a
flowchart. You can assume that the task 2 is already completed.[6]
 DECLARE NoOfBuyer, BuyerIDToBid:Integer

 DECLARE ToContinueAuction : String

 DECLARE OfferedBid : REAL

 ExistingBid[1: NoOfItems]

 INPUT "Enter number of buyers for auction " NoOfBuyer

 BuyerID[1:NoOfBuyer]

 PRINT "Buyers setup"

 For Index  1 To NoOfBuyer

 BuyerID[Index]  Index

 Next

 'Initialising current highest bid (ExistingBid[])with 0

 For Index  1 To NoOfItems

 ExistingBid[Index]  0

 Next Index

 'Starting Auction

 PRINT "Its auction time "

 REPEAT

 INPUT "Enter Buyer number " BuyerIDToBid

 While BuyerIDToBid > NoOfBuyer

 PRINT "Error: Buyer not found re-enter a valid buyer number "

 INPUT BuyerIDToBid

 End While

 Input "Enter Item number to bid " ID

 IsFound  False

 SearchIndex  1

 While IsFound = False And SearchIndex <= NoOfItems

 If ItemID[SearchIndex] = ID Then

 ISFound = True

 Else

 SearchIndex = SearchIndex + 1

 End If

 End While

 If IsFound = True Then

 Print "Item description : " , Description[SearchIndex]

 Print "Current highest bid : " , ExistingBid[SearchIndex]

 INPUT "Enter offered bid : " OfferedBid

 If OfferedBid <= ExistingBid[SearchIndex] Then

 PRINT "Error: Your bid is lesser or equal to existing bid"

 Else

 ExistingBid[SearchIndex]  OfferedBid

 NoOfBids[SearchIndex]  NoOfBids[SearchIndex] + 1

 End If

 Else

 PRINT "Item not found try again"

 End If

 PRINT "Enter No to end auction, or press ENTER to continue "

 INPUT ToContinueAuction

 Until ToContinueAuction = "No"

Q 10) Write an algorithm to complete Task 3, using either pseudo code, programming statements or a

flowchart. Do not include declaration of variable. You can assume that the task 1 & 2 are already

completed. [6]

 DECLARE CountSold, CountNotSold, Count0Bid : INTEGER

 DECLARE MarkItem[1:NoOfItems] : STRING

 DECLARE CompanyFee, TotalFee : REAL

 CountSold  0

 CountNotSold  0

 Count0Bid  0

 TotalFee  0

 For Count  1 To NoOfItems

 If ExistingBid[Count] >= ReservePrice[Count] Then

 MarkItem[Count]  "SOLD"

 CountSold  CountSold + 1

 CompanyFee  ExistingBid[Count] * 10 / 100

 TotalFee  TotalFee + CompanyFee

 ElseIf ExistingBid[Count]<ReservePrice[Count] And NoOfBids[Count]>0 Then

 CountNotSold  CountNotSold + 1

 Else

 Count0Bid  Count0Bid + 1

 End If

 Next

 PRINT "Total company fee = " , TotalFee

 PRINT "List of items have bids but not sold"

 FOR Count  1 TO NoOfItems

 IF ExistingBid[Count] < ReservePrice(Count) AND NoOfBids[Count] > 0 THEN

 PRINT ItemNo[Count] , " , " , ExistingBid[Count]

 End If

 Next

 PRINT "List of items have no bid"

 FOR Count  1 TO NoOfItems

 IF NoOfBids[Count] = 0 THEN

 PRINT ItemNo[Count]

 ENDIF

 NEXT

 PRINT "Total number of items sold = " , CountSold

 PRINT "Total number of items have bids but not sold = " , CountNotSold

 PRINT "Total number of items have no bid = " , Count0Bid

Q 11) Explain how do you validate that there are at least 10 items for auction. Include programming

statement to support your explanation. [5]

A constant MinItems=10 is declared and then NoOfItems are input. Limit check is used to validate

NoOfItems with WHILE loop.

Programming Statements:

 CONSTANT MinItems  10

 PRINT "Number of Items available for sale (atleast 10)"

 INPUT NoOfItems

 //Validation number of items

 WHILE NoOfItems < MinItems DO

 PRINT "Error:Auction could not be set up"

 PRINT "Enter No Of Items atleast 10"

 INPUT NoOfItems

 END WHILE

Q 12) Give three different data sets that could be used to check your validation rules for Task 1.
 Explain why you chose each data set. [2+2+2]
Data set 1: 30, 40, 20
Reason for choice: This is normal data, it should be accepted by algorithm

Data set 2: 8, 6, 2
Reason for choice: This is abnormal data, it should be rejected by algorithm

Data set 3: 10

Reason for choice: This is extreme data, it should be accepted by algorithm

Q 13) Explain how do you ensure that item numbers are unique. Include programming statement to

support your explanation. [4]

Explanation: Item ID is looked up in the array. If the entered ID is found in the array it is rejected and

asked to enter another ID

Programming Statements:

PRINT “Enter Item ID”

INPUT ID

SerachIndex1

IsFound  False

WHILE IsFound=False AND SearchIndex<=NoOfItem DO

 IF ID= ItemID[SearchIndex] THEN

 IsFound=True

 ELSE

 SearchIndex  SearchIndex+ 1

 ENDIF

ENDWHILE

IF IsFound=False THEN

 ItemID[Index]  ID

 Index  Index + 1

ELSE

 PRINT “Error: Item ID is already taken, try another.”

ENDIF

Q 15) Describe how do you assign unique number to each buyer in task 2 with the help of programming

statements. [4]

Explanation: At first NoOfBuyer are input and then using count-controlled loop each value of loop counter

is assigned to buyerID array

Programming Statements:

INPUT "Enter number of buyers for auction " NoOfBuyer

 BuyerID[1:NoOfBuyer]

 PRINT "Buyers setup"

 For Index  1 To NoOfBuyer

 BuyerID[Index]  Index

 Next

Q 16) Explain how do you confirm that offered bid is greater than existing bid with the help of

programming statement in task 2. [1 + 2+3]

Validation Rule: Limit check.

Explanation: OfferedBid is input from buyer and comapred with current highest bid (ExistingBid) of item if

offered bid is greater than ExistingBid it will be selected and stored as new ExistingBid otherwise rejected.

Programming Statement for validation:

 INPUT "Enter offered bid : " OfferedBid

 If OfferedBid <= ExistingBid[SearchIndex] Then

 PRINT "Error: Your bid is lesser or equal to existing bid"

 Else

 ExistingBid[SearchIndex]  OfferedBid

 NoOfBids[SearchIndex]  NoOfBids[SearchIndex] + 1

 End If

Q 17) Give two different data sets that could be used to check validation rules in Q 16.

Explain why you chose each data set. [2+2]

Data set 1: ExistingBid=150 OfferedBid=200

Reason for choice: It is a normal data it should be accepted by algorithm as offered bid is greater than

existing bid

Data set 2: ExistingBid=200 OfferedBid=200

Reason for choice: It is a abnormal data it should be rejected by algorithm as offered bid is not greater

than existing bid

Q 18) Comment on efficiency of code you have written in Q 16 above. [2]

It is an efficient code. It will compare offered bid with current highest bid (ExistingBid), whenever a buyer

bids and item. It will accept only those bids which are greater than current highest bid (ExistingBid)

Q 19) Write down programming statements to input item number to bid in task 2 including validation

check. [3]

 Input "Enter Item number to bid " ID

 'Validation of Item ID

 IsFound  False

 SearchIndex  1

 While IsFound = False And SearchIndex <= NoOfItems

 If ItemID[SearchIndex] = ID Then

 ISFound = True

 Else

 SearchIndex = SearchIndex + 1

 End If

 End While

 If IsFound = True Then

 Print "Item description : " , Description[SearchIndex]

 Print "Current highest bid : " , ExistingBid[SearchIndex]

 INPUT "Enter offered bid : " OfferedBid

 Else

 PRINT “Item not found . Try again”

ENDIF

Q 20) Write down pseudo code to initialise COUNTing and TOTALing variables of task-3. [4]

 CountSold  0

 CountNotSold  0

 Count0Bid  0

 TotalFee  0

Q 21) Explain how do you mark an item “SOLD”. You should include programming statements to support

your explanation. [5]

Explanation: At the end of auction ExistingBid of each item is compared with the ReservePrice of the item.

If ExistingBid is greater or equals to ReservePrice item is marks as “SOLD”.

Programming Statements:

 For Count  1 To NoOfItems

 If ExistingBid[Count] >= ReservePrice[Count] Then

 MarkItem[Count]  "SOLD"

 End If

 Next

Q 22) Draw program flowchart for the programming statements you have written in Q 21. [5]

Q 23) Explain how do you display item number of the item that has received the highest bid. You should

include programming statements to support your explanation. [5]

Explanation: HighestBid is initialised with 0 and then ExistingBid of each item is compared with the

HighestBid. And then ItemID of all items are displayed whose ExistingBid matches the HighestBid

Programming Statements:

HighestBid  0

FOR Index=1 TO NoOfItems

IF ExistingBid[Index]>HighestBid THEN HighestBid ExistingBid[Index]

NEXT Index

PRINT “List of items received highest bid in the auction”

FOR Index=1 TO NoOfItems

IF ExistingBid[Index]=HighestBid THEN

PRINT ItemID[Index]

 ENDIF

NEXT Index

Q 24) Explain how do you display item number of the item that has received the highest number of bids.

You should include programming statements to support your explanation. [5]

Explanation: HighestNoOfBids is initialised with 0 and then NoOfBids of each item is compared with the

HighestNoOfBids. And then ItemID of all items are displayed whose NoOfBids matches the

HighestNoOfBids

Programming Statements:

HighestNoOfBids  0

FOR Index=1 TO NoOfItems

IF NoOfBids[Index]>HighestNoOfBids THEN HighestNoOfBids NoOfBids[Index]

NEXT Index

PRINT “List of items received highest number of bids in the auction”

FOR Index=1 TO NoOfItems

IF NoOfBids[Index]=HighestNoOfBids THEN

PRINT ItemID[Index]

 ENDIF

NEXT Index

Q 26) It is decided that item number is entered by seller. Explain how you ensure that the item numbers

entered are unique. You should include programming statements to support your explanation. [5]

Explanation: Item ID is looked up in the array. If the entered ID is found in the array it is rejected and

asked to enter another ID

Programming Statements:

PRINT “Enter Item ID”

INPUT ID

SerachIndex1

IsFound  False

WHILE IsFound=False AND SearchIndex<=NoOfItem DO

 IF ID= ItemID[SearchIndex] THEN

 IsFound=True

 ELSE

 SearchIndex  SearchIndex+ 1

 ENDIF

ENDWHILE

IF IsFound=False THEN

 ItemID[Index]  ID

 Index  Index + 1

ELSE

 PRINT “Error: Item ID is already taken, try another.”

ENDIF

Q 25) Explain how do you search and confirm that item number entered by buyer is valid or invalid in task

2. You should include programming statements to support your explanation. [5]

Explanation: ItemID to bid is entered by buyer and then looked up in array of ItemID, If found then

accepted otherwise rejected

Programming Statements:

Input "Enter Item number to bid " ID

 'Validation of Item ID

 IsFound  False

 SearchIndex  1

 While IsFound = False And SearchIndex <= NoOfItems

 If ItemID[SearchIndex] = ID Then

 ISFound = True

 Else

 SearchIndex = SearchIndex + 1

 End If

 End While

 If IsFound = True Then

 Print "Item description : " , Description[SearchIndex]

 Print "Current highest bid : " , ExistingBid[SearchIndex]

 INPUT "Enter offered bid : " OfferedBid

 Else

 PRINT “Item not found . Try again”

ENDIF

