Arrays
An array is a contiguous space in memory to store values. An array is an ordered sequence of values. The order is indicated by the position or index. The first position or index starts at 0. The next index 1 and so on. The last index is the size of the array - 1. Here is an example of an array of 10 unsorted integers.
	
index
	 0
	 1
	 2
	 3
	 4
	 5
	 6
	 7
	 8
	 9

	value
	 12
	 49
	 -2
	 26
	 5
	 17
	 -6
	 84
	 72
	 3

Array declaration and creation
When creating an array, you specify the number of elements in the array as follows:
variable = new type[length];

For example, to create an array of 10 integers:
numbers = new int[10];

Storing Values and Accessing Elements
The syntax for storing a value in an array element is:
variable[index] = expression;

For example:
numbers[0] = 27;
numbers[3] = -6;
would change the numbers array to:
	index
	 0
	 1
	 2
	 3
	 4
	 5
	 6
	 7
	 8
	 9

	value
	 27
	 0
	 0
	 -6
	 0
	 0
	 0
	 0
	 0
	 0

The syntax for accessing an array element is:
 variable[index]

 Where the index can be any expression that results in an int. For example:

if (numbers[3] > 0) {
 Print (numbers[3] + " is positive");
} else {
 Print (numbers[3] + " is not positive");
}
When you declare an array, each element of the array is set to a default initial value.
For integers, the default value is 0.
Arrays and Loops
We can use an integer variable as the index of an array. If we use a for loop to count from 0 to the highest index, then we can process each element of an array. For example, the following code would sum the elements in the numbers array.
int sum = 0;

for I = 0 to array length - 1

 sum = sum + numbers[i]
Next
Find Maximum Value in the Array
To find the maximum value, you initialize a placeholder called max with the value of the first element in the array. Then you go through the array element by element. If any element is greater than max you replace max with that element. Here is the pseudocode:
Max = array[0]
FOR i = 1 to array length - 1
 IF array[i] > Max THEN
 Max = array[i]
 ENDIF
Next
PRINT Max
Sequential Search for an Element in the Array
Let the element that we are searching for be MAX. We need to know if that element occurs in the array. It will return the position of the occurrence of that element. This is the pseudo code:
FOR i = 0 to array length - 1
 IF MAX = array[i] THEN
 PRINT i
 ENDIF
Next

Another variation of this problem is to return the number of occurrences of X in the array. Here is a modification of the above code:
SET Count to 0
FOR i = 0 to array length - 1
 IF X = array[i] THEN
 COUNT = COUNT +1
 ENDIF
NEXT
PRINT Count
Selection Sort
This is one of the easiest sorting algorithms to understand and write but not the most efficient one. In Selection Sort we start at the first element of the array and go through the array and find the minimum element. We swap the minimum element with the element at the first place. We start at the second position in the array and go through the array and find the minimum element in the remaining portion of the array. We swap that minimum element with the element with the element at the second position. We start at the third position and repeat the procedure until we reach the end of the array.
FOR i = 0 to array length - 2
 Min = array[i]
 MinIndex = i
 FOR j = i + 1 to array length - 1
 IF array[j] < Min THEN
 Min = array[j]
 MinIndex = j
 ENDIF
 NEXT
 array[MinIndex] = array[i]
 array[i] = Min
NEXT
Selection Sort is not efficient. It does the same amount searches if the values in the array are in random order, partially sorted or completely sorted.

The Temperature Program
Consider the interaction at the beginning of these notes. Here is pseudocode that follows the sequence of interactions, using an array to manage the values that the user enters. Note that we can't count how many elements are above the average until we have computed the average, and we can't compute the average until we have input all the elements.
1. Input the number of days from the user.
2. Declare and create an int array with the number of days as its length.
3. For each index in the array:
A. Input the temperature from the user.
B. Store the temperature in the array at that index.
4. Initialize a sum to zero.
5. For each index in the array:
A. Add the value at that index to the sum.
6. Calculate and print the average.
7. Initialize a counter to zero.
8. For each index in the array:
A. If the value at that index is greater than the average:
a. Increment the counter.
9. Print the counter.
We could have combined the first two loops into one loop, but it is cleaner to do them separately.

Additional Array Features
If you know in advance what the values are going to be in an array, you can specify those values when you declare the array, for example:
int[] daysInMonth = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
String[] weekDayNames = {"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"};

