http://sahatmozac.blogspot.com

ADDITIONAL MATHEMATICS

MODULE 10

COORDINATE GEOMETRY

http://mathsmozac.blogspot.com

CHAPTER 6 : COORDINATE GEOMETRY

CONT	CONTENTS	
6.1	Conceptual Map	2
6.2	Distance Between Two Points	2
	Exercises 6.2	3
6.3	Division Of A Line Segment	4
	Exercises 6.3.1	5
	Exercises 6.3.2	7
	SPM Questions	8
	Assessment	10
	Answer	11

6.1 Conceptual map

6.2 Distance between two points.

Distance AB =

Examples :	Solution.	
 Find the distance between A(2,3) and B(7,6). 	Use $(x_1, y_1) = (5, 3)$ and $(x_2, y_2) = (8, 7)$. Therefore, $AB = \sqrt{(8-5)^2 + (7-3)^2}$ = = = 5 units	

Examples :	Solution.
 2. Given that the distance between R(4, m) and S(-1, 3) is 13 units, find the value of m. 	Given that RS = 13 units, therefore $\sqrt{(-1-4)^2 + (m-3)^2} = 13$ = $(m-3)^2 =$ m-3 = = or $=m =$ or $m =$

EXERCISES 6.2:

1. Find the distance between each of the following pairs.

(a) $C(1, 3)$ and $D(4, -1)$	(b) R(-2, 6) and T(7, -3)
(c) K(-5, -2) and L(-6,-1)	1
(c) $\mathbf{K}(-3, -2)$ and $\mathbf{L}(-0, -1)$	(d) $P(\frac{1}{2}, 1)$ and $Q(1, -3)$
	$\frac{1}{2}$, 1) and $Q(1, 3)$
	-

2. Given the points R(-9, -2), S(-1, -6) and T(-1,2), show that TR = RS.

3. The distance between the points U(6,3t) and the points V(12,-t) is 10 units. Find the possible value of *t*.

4. Given point P(h, k) is equidistant from points A(2, 5) and B(-2, 4). Show that 2k + 8h = 9.

6.3 Division of A Line Segment

6.3.1 The midpoint of two points.

Note:

If C is the midpoint of the line AB,

then coordinate C =

Examples :	Solution.	
1. Find the midpoints of points P(3, 4) and Q(5, 8)	(a) Midpoint PQ = $\left(\frac{3+5}{2}, \frac{4+8}{2}\right)$	
	$=\left(rac{8}{2},rac{12}{2} ight)$	
	= (4,6).	

Examples :	Solution.
2. Points A and B are (5, <i>r</i>) and (1, 7) respectively. Find the value of <i>r</i>, if the midpoint of AB = (3, 5).	Midpoint of AB = $\left(\frac{5+1}{2}, \frac{r+7}{2}\right)$ (3, 5) = $\left(3, \right)$ $\frac{r+7}{2} =$ r =
3. B(3, 4), C(7, 5), D(6, 2) and E are the vertices of a parallelogram. Find the coordinates of the point E	Let the vertex E be (x, y). The midpoint of BD = $\left(\frac{3+6}{2}, \right)$ = $\left(,3\right)$. The midpoint of CE = $\left(,,\frac{5+y}{2}\right)$ The midpoint of BD = The midpoint of CE. $\left(,,\right) = \left(\frac{9}{2},3\right)$ $\frac{7+x}{2} = \frac{9}{2}$ and $\frac{5+y}{2} = 3$ x = - and $y = -$.

EXERCISES 6.3.1

1. Find the midpoint of each pair of points.

(a) I(4, -5) and J(6, 13)	(b) V(-4, 6) and W(2,-10)

2. If M(3, q) is the midpoint of the straight line K(2, 6) and L(4, 5). Find the value of q.

3. The coordinates of points R and S are (4, *k*) and (h,5) respectively. Point T(-1, 2) is the midpoint of RS. Find the values of h and *k*.

6.3.2 Finding the coordinates of a point that divides a line according to a given ratio m : n.

Examples	Solution
1. Given that G(-3, 6) and H(7, 1). If B divides GH according to the ratio 2:3, find the coordinates of B.	Let the coordinates of point B be (x,y). Coordinates of point B = $\left(\frac{nx_1 + mx_2}{m+n}, \frac{ny_1 + my_2}{m+n}\right)$ $= \left(\frac{3(-3) + 2(7)}{2+3}, \frac{3(6) + 2(1)}{2+3}\right)$ = (1, 4).

http://mathsmozac.blogspot.com

	Examples	Solution
2.	Given the points P(-1, 3) and Q(8, 9). Point R lies on the straight line PQ such that $2PR = RQ$. Find the coordinates of point R.	Given 2PR = RQ, therefore $\frac{PR}{RQ} = \frac{1}{2}$, m = 1 and n = 2 Coordinates of point R = $\left(\frac{2(-1) + 1(8)}{1+2}, \frac{2(3) + 1(9)}{1+2}\right)$ = (2, 5)
3.	Point P(-3, -2) divides internally a line segment joining two points R(6, 1) and S(-6, -3). Find the ratio of division of line segment RS.	Let the ratio is (m, n). $(-3,-2) = \left(\frac{n(6) + m(-6)}{m+n}, \frac{n(1) + m(-3)}{m+n}\right)$ $-3 = \frac{6n + 6m}{m+n}$ $-3(m+n) = 6n + 6m$ $-3m - 3n = 6n + 6m$ $3m = 9n$ $\frac{m}{n} = \frac{3}{1}, m : n = 3 : 1.$

EXERCISES 6.3.2

1. The coordinates of K and L are (10, 5) and (5, 15) respectively. If point M divides KL to the ratio of 2 : 3, find the coordinates of point M.

2. Given point P(k, 1), Q(0,3) and R(5, 4) find the possible values of *k* if the length of PQ is twice the length of QR.

- 3. P(a, 1) is a point dividing the line segment joining two points A(4, 3) and B(-5, 0) internally in the ratio m : n. Find
 - (a) m : n.
 - (b) the value of *a*.

4. K(-4, 0), L and P(8, 6) are three points on the straight line KL such that $\frac{KL}{LP} = m$. Find the coordinates of point L in terms of *m*.

SPM QUESTIONS.

The points A(2h, h), B(p, t) and C(2p, 3t) are on a straight line. B divides AC internally in the ratio 2 : 3. Express p in the terms of t. (2003, Paper 1)

2. Diagram 1 shows a straight line CD meets a straight line AB at the point D. The point C lies on the y- axis. (2004/P2)

Given that 2AD = DB, find the coordinates of D.

ASSESSMENT (30 minutes)

1. Given the distance between point Q (4, 5) and R (2, t) is $2\sqrt{5}$, find the possible values of t.

2. Given the points A (-2, 3), B (-4, 7) and C (5, -6). If P is the midpoint of AB, find the length of PC.

3. In the diagram, PQR is a straight line. Find the ratio of PQ : QR.

4. The points P(h, 2h), Q(k, 1) and R(3k, 21) are collinear. Q divides PR internally in the ratio 3 : 2. Express k in the terms of l.

ANSWERS:

Exercise 6.2

- 1. (a) 5 units
 - (b) 12.728 units
 - (c) 1.4142 units
 - (d) 4.0311 units
- 3. 2, -2 units.

Exercise 6.3.1

- 1. (a) (5,4) (b) (-1,-2)
- 2. $5\frac{1}{2}$
- 3. h = -6, k = -1.

Exercise 6.3.2

- 1. (8,9)
- 2. -10
- 3. (a) 2:1
 - (b) -2

4. $\left(\frac{8m-4}{m+1}, \frac{6m}{m+1}\right)$

SPM QUESTIONS

- 1. p = -2t
- 2. D = (3, -4)

ASSESSMENT

- 1. 1,9
- 2. 13.6015 units.
- 3. 1:2

4.
$$m = \frac{1}{8}n$$

http://sahatmozac.blogspot.com

ADDITIONAL MATHEMATICS

MODULE 11

COORDINATE GEOMETRY

http://mathsmozac.blogspot.com

page

6.1	Concept map	2	
6.2	Gradient of a straight line	3	
	6.2.1 . Axis interceptions	3	
	Exercise 1	3-4	
	6.2.2 . Gradient of a straight line that passes		
	through two points	4	
	Exercise 2	5	
6.3	Self assessment 1	5-7	
6.4	Equation of a straight line	7	
	6.4.1. Given the gradient and passing through		
	point (x1,y1)	8	
	6.4.2. Line which passed through two points	8	
	6.4.3 Given the gradient and y-intercept	9	
6.5	Self assessment 2	9-10	
	6.4.4. Point of intersection of two lines	11	
66	Self assessment 3	11	
Short test		12	
Answers		13	

CONTENTS

CHAPTER 6: COORDINATE GEOMETRY 6.1 : CONCEPT MAP

http://mathsmozac.blogspot.com

6.2. GRADIENT OF A STRAIGHT LINE

6.2.1 AXIS INTERCEPTIONS

Find the x-intercepts,y-intercepts and gradients of the following straight lines PQ.

Example:

 $GradientPQ = \frac{y_2 - y_1}{x_2 - x_1}$

$$=\frac{0-5}{3-0} = -\frac{5}{3}$$

EXERCISE 1:

6.3.Gradient of a straight line that passes through two points

Gradient =	$y_2 - y_1$
	$x_2 - x_1$

Example: Find the gradient of a straight line that passes through points A (2,-4) and B(4,8)

Solution:

Gradient of AB , m_{AB} = $\frac{8 - (-4)}{4 - 2}$ = 6

EXERCISE 2

Find the gradient of the straight line joining each of the following pairs of points
 (a) (1,3) and (4,9)
 Answer:

(b) (-1,2) and (1,8) Answer:

Find the value of h if the straight line joining the points (2h,-3) and (-2,-h + 2) has a gradient of 2.
 Answer:

3. Given P(3a-1,-a), Q(-5,3) and R(1,6) are three points on a straight line. Find the value of a. Answer:

1. Find the gradients of the following straight lines.

2. The diagram shows a straight line which has a gradient of 2. Find the coordinates of point B.

http://mathsmozac.blogspot.com

Answer...

3.A straight line with a gradient of $\frac{1}{2}$ passes through a point (-2,4) and intersects the x-axis and the y-axis at points A and B respectively. Find the coordinates of points A and B. Answer:

4.A straight line has a gradient of h/4 and passes through a point (0,4h).
(a) Find the equation of the straight line.
(b) If the straight line passes through point (-4,3),find the value of h. Answer:

(a)

The figure on the previous page shows a triangle ABC with A(1,1) and B(-1,4). The gradients of AB, AC and BC are -3m,3m and m respectively.

(i) Find the value of m

(ii) Find the coordinates of C

(iii) Show that AC=2AB

Answer:

(i)

(ii)

(iii)

6.4 EQUATION OF A STRAIGHT LINE

METHODOLOGY:

- 6.4.1. GIVEN THE GRADIENT (m) AND PASSING THROUGH POINT (X_1, Y_1)
- 6.4.2 LINE WHICH PASSED THROUGH TWO POINTS (X_1, Y_1) AND (X_2, Y_2)
- 6.4.3 GIVEN THE GRADIENT(m) AND Y-INTERCEPTS(c)

6.4.1 GIVEN THE GRADIENT(m) AND PASSING THROUGH POINT (X_1, Y_1)

	m	(x1,y1)	Y-y1=m(x-x1)	Y=mx + c	Equation in general form ax+by+c=0
Examples:	5	(0,-4)	Y-(-4)=5(x-0) Y+4 =5x	Y=5x-4	5x-y-4=0
1.	$\frac{1}{3}$	(3,0)			
2.	$\frac{-1}{3}$	(-3,0)			
3.	-3	(-1,4)			

6.4.2 LINE WHICH PASSED THROUGH TWO POINTS (X_1, Y_1) AND (X_2, Y_2)

	<i>x</i> ₁	<i>Y</i> ₁	<i>x</i> ₂	<i>y</i> ₂	$\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$	Y=mx+c	Equation in general form (ax+by+c=0)
Example	1	3	4	9	$\frac{y-3}{x-1} = \frac{9-3}{4-1}$		

http://mathsmozac.blogspot.com

					$\frac{y-3}{x-1} = \frac{6}{3} = 2$ y-3=2(x-1) y-3=2x-2	Y=2x-2+3 Y=2x+1	2x-y+1=0
1.	-1	2	1	-8			
2.	2	-2	-b	4b			
3.	3a-1	-a	-5	3			

6.4.3_GIVEN THE GRADIENT(m) AND Y-INTERCEPTS(c)

	m	y-intercept	Y=Mx+c	$\frac{x}{a} + \frac{y}{b} = 1$	Ax+by+c=0
Example:	$\frac{-3}{2}$	-3	$Y = \frac{-3}{2}x - 3$	$\frac{x}{-2} + \frac{y}{-3} = 1$	-3x-2y-6=0
1	5	-4			
2	$-\frac{1}{2}$	-6			
3	$-\frac{2}{5}$	-2			

http://mathsmazac.blogspot.com

1.A straight line which passes through the points (2,3) and (5,m) has gradient m. Find the value of m.

Answer:

2. Find the equation of the straight line which joins the points P(-3,4) and Q(-1,-2). Given that the line intersects the y-axis at the point R, find the length of PR Answer:

3. Given the points A (-1,15), B(2,7) and C (4,10). The point P divides the straight line BC in the ratio 1:2. Find the equation of the straight line which passes through the points P and A. Answer:

4. The straight line intersects x-axis and y-axis at point A(3,0) and B(0,20 respectively. Find (a) the equation of straight line in:

(i) Intercept form Answer

(ii) Gradient form Answer (iii) general form Answer:

(b) the equation of straight line that passes through the point A and with gradient 2 Answer:

6.4.4 Point of intersection of two lines

example: Find the point of intersection of the straight lines y=-2x + 1 and $y = \frac{1}{2}x + 6$

Solution: y = -2x + 1(1) $y = \frac{1}{2}x + 6$ (2) (2) x 4: 4y = 2x + 24(3) (1) + (3): 5y = 25 y = 5Substitute y = 5 into (1) 5 = -2x + 1 2x = -4 x = -2Therefore the point of intersection is (-2,5)

1. Two straight lines $\frac{y}{6} - \frac{x}{2} = 1$ and ky = -x + 12 intersect the y-axis at the same point. Find the value of k

Answer;

http://mathsmazac.blogspot.com

2.A straight line passes through a point (5,1) and the x-intercept is 10. If the straight line intersects the y-axis at point R, find
(a) the equation of the straight line
Answer

(b) the coordinate of point R Answer

Short Test (20 minute)

- 1. The diagram below shows a straight line CD which meets a straight line AB at point C. Point D lies on the y-axis.
- (a) Write down the equation of AB in the intercept form
- (b) Given that 2AC = CB, find the coordinate of point C

Answer:

(a)

(b)

Exercise 1. 1) 2/3 2) 3/5 3) Exercise 2 1a) m=2 1b) m=3 2) h= -3

3.) a= -2 Self assessment I

1a) $\frac{2}{3}$ 1b) $-\frac{2}{3}$ 1c.) zero 1d) undefined 2) A(4,0) 3) A(-10,0), B(0,5) 4a) $y = \frac{h}{4}x + 4h$ 4b) h= 1 5(i) m=¹/₂ (ii) C=(5,7) (iii) AC= $\sqrt{52}, AB = \sqrt{13}$

3) 2 4) 4

Self assessment II

1) m=-3/2

2)PR= $\sqrt{90}unit$

3) 11y+21x=144

http://mathsmozac.blogspot.com

4a.(i)
$$\frac{x}{3} + \frac{y}{2} = 1$$

(ii) $y = 2 - \frac{2}{3}x$
(iv) $-2x-3y + 6 = 0$
4b) $y=2x-6$

Self assessment III

1) k=2 2a) 5y=-x+10 2b) R(0,2)

Short test

1a) $\frac{x}{-6} + \frac{y}{3} = 1$ 1b) C(-4,1)

ADDITIONAL MATHEMATICS

MODULE 12

COORDINATE GEOMETRY

CONTENTS

	Subtopic	Page
6.0	Parallel lines and perpendicular lines	2
6.1	Conceptual Map	2
6.2.1	Parallel Lines	2
	Exercise 6.2.1	3
6.2.2	Perpendicular Lines	4
	Exercise 6.2.2	5
6.2.3	Problem Involving The Equation of Straight Line	6
	Exercise 6.3.2.	6

http://mathsmozac.blogspot.com

6.3	Equation of a Locus	8
6.3.1	Locus of a point that moves in such away that its distance	8
	from a fixed points is a constant	
	Exercise 6.3.1	8
6.3.2	Locus of a point that moves in such away that the ratio of	9
	its distance from fixed points is a constant.	
	Exercise 6.3.2	9
6.3.3	Problem Solving Involving Loci	10
	Exercise 6.3.3	11
6.4	Area of Polygon	12
6.4.1	Area of Triangle	12
6.4.2	Area of Quadrilateral	12
	Exercise 6.4	14
	SPM Question	15
	Assessment	16
	Answer	17

6.0 PARALLEL LINES AND PERPENDICULAR LINES.

6.1 Conceptual Map

6.2.1 Parallel line.

Notes:

Two straight line are parallel if $m_1 = m_2$ and vise versa.

Examples	Solution
1. Determine whether the straight lines 2y - x = 5 and $x - 2y = 3$ are parallel.	2y - x = 5, y = $\frac{1}{2}x + 5$, $m_1 = \frac{1}{2}$ x - 2y = 3 y = $\frac{1}{2}x - 3$, $m_2 = \frac{1}{2}$ Since $m_1 = m_2$, therefore the straight lines 2y - x = 5 and x - 2y = 3 are parallel.
 2. Given that the straight lines 4x + py = 5 and 2x - 5y - 6 = 0 are parallel, find the value of p. 	Step1: Determine the gradients of both straight lines. 4x + py = 5 $y = -\frac{4}{p}x + \frac{5}{p}, m_1 = -\frac{4}{p}$ 2x - 5y - 6 = 0 $y = \frac{5}{2}x + 3, m_2 = \frac{5}{2}$ Step 2: Compare the gradient of both straight lines. Given both straight lines are parallel, hence $m_1 = m_2$ $-\frac{4}{p} = \frac{2}{5}$ p = -10
3. Find the equation of the straight line which passes through the point P(-3, 6) and is parallel to the straight line 4x - 2y + 1 = 0.	$4x - 2y + 1 = 0, y = 2x + \frac{1}{2}.$ Thus, the gradient of the line, m = 2. Therefore, the equation of the line passing through P(-3, 6) and parallel to the line $4x - 2y + 1 = 0$ is y - 6 = 2 (x - 3) y = 2x + 12.

EXERCISES 6.2.1.

1. Find the value of k if the straight line y = kx + 1 is parallel to the straight line 8x - 2y + 1 = 0.

2. Given a straight line 3y = mx + 1 is parallel to $\frac{x}{3} + \frac{y}{5} = 1$. Find the value of *m*.

3. Given the points A(1, 2), B(4, -3),C(5, 4) and D(h, -1). If the straight line AB is parallel to the straight line CD, find the value of h.

4. Find the equation of a straight line that passes through B(3, -1) and parallel to 5x - 3y = 8.

5. Find the equation of the straight line which passes through the point A(-2, 3) and is parallel to the straight line which passes through the points P(1, 2) and Q(5, 1).

6.2.2 Perpendicular Lines.

Notes:

Two straight lines are perpendicular to each other if $m_1m_2 = -1$ and vise versa.

	~
Examples	Solution
Determine whether the straight lines $3y - x - 2 = 0$ and $y + 3x + 4 = 0$ are perpendicular.	3y - x - 2 = 0 $y = \frac{1}{3}x + \frac{2}{3}, m_1 = \frac{1}{3}$ y + 3x + 4 = 0 $y = -3x - 4, m_2 = -3$ $m_1m_2 = \frac{1}{3} \times (-3) = -1.$ Hence, both straight lines are perpendicular.
Examples	Solution
Find the equation of the straight line which is perpendicular to the straight line $x + 2y - 6 = 0$ and passes through the point (3, -4).	x + 2y - 6 = 0 $y = -\frac{1}{2}x + 3, m_1 = -\frac{1}{2}$ Let the gradient of the straight line which is perpendicular = m ₂ $\left(-\frac{1}{2}\right)m_2 = -1$ $m_2 =$ The equation of the straight line = y =

EXERCISES 6.2.2.

1. The equation of two straight line are $\frac{x}{3} + \frac{y}{5} = 1$ and 3x - 5y = 8. Determine whether the lines are perpendicular to each other.

2. Find the equation of the straight line which passes through point (2, 3) and perpendicular of the straight line 2y + x = 4.

3. Given the points A(k, 3), B(5, 2), C(1, -4) and D(0, 6). If the straight line AB is perpendicular to the straight line CD, find the value of k.

4. Find the value of h if the straight line y - hx + 2 = 0 is perpendicular to the straight line 5y + x + 3 = 0

http://mathsmogac.blogspot.com

6.2.3 Problem involving The Equations Of Straight Lines.

Examples	Solution
1. Given A(3, 2) and B(-5, 8). Find the equation of the perpendicular bisectors	The gradient of AB, $m_1 ==$
of the straight line AB.	The gradient of the perpendicular line = m_2
	$m_1 m_2 = m_2 = m_2 = m_2$
	The midpoint of AB =
	The equation of the perpendicular bisector,
	=

EXERCISES 6.5.4

1. Given that PQRS is a rhombus with P(-1, 1) and R(5, 7), find the equation of QS.

- 2. ABCD is a rectangle with A(-4, 2) and B(-1, 4). If the equation of AC is 4x + 7y + 2 = 0, find (a) the equation of BC.
 - (b) the coordinates of points C and D.

3. PQRS is a rhombus with P(0, 5) and the equation of QS is y = 2x + 1. Find the equation of the diagonal PR.

4. A(2, k), B(6, 4) and C(-2, 10) are the vertices of a triangle which is right-angled at A. Find the value of k.

6.3 EQUATION OF A LOCUS

6.3.1 Locus of a point that moves in such a way that its distance from a fixed point is a constant.

Example:	Solution
 A point K moves such that its distance from a fixed point A(2,1) is 3 units. Find the equation of the locus of K. 	Let the coordinates of K be (x,y) Distance of KA =
	= 3 unit Hence, $\sqrt{(x-2)^2 + (y-1)^2}$ =
	=
	$x^2 - 4x + 4 + y^2 - 2y + 1 = 9$
	$x^2 - 4x + 4 + y^2 - 2y + 1 - 9 = 0$
	$x^2 + y^2 - 4x - 2y - 4 = 0$
	The equation of the locus of P is
	$x^2 + y^2 - 4x - 2y - 4 = 0$

http://mathsmogac.blogspot.com

Exercises 6.3.1

1. Find the equation of the locus point M which moves such that its distance from each fixed point is as follows.

a. 5 units from A (-2,1)	b. 7 units from B (-3,-1)
c. 12 units from C (0,1)	d. 3 units from D (2,0)

6.3.2 Locus of a point that moves in such away that the ratio of its distances from two fixed points is a constant.

Example:

A point P moves such that it is equidistant from points A (2,-1) and B (3,2). Find the equation of the locus of P.

Solution:

Let the coordinates of P be (x,y)
Distance of AP = Distance of BP

$$\sqrt{(x-2)^2 + (y+1)^2} = \sqrt{(x-3)^2 + (y-2)^2}$$

 $x^2 - 4x + 4 + y^2 + 2y + 1 = x^2 - 6x + 9 + y^2 - 4y + 4$
 $2x + 6y = 8$
 $x + 3y = 4$
The equation of the locus of P is x + 3y =4

Exercises 6.3.2

1. A point P moves such that it is equidistant from points A (3,2) and B (2,1). Find the equation of the locus of P.
 Given points R(4,2), S(-2,10) and P (x,y) lie on the circumference of diameter RS. Find the equation of the moving point P.
3. Points A(4,5),B(-6,5) and P are vertices of a triangle APE. Find the equation of the locus of point P which moves such that triangle APB is always right angled at P.

6.3.3 Problems solving involving loci

Example:

1. Given points A (2, 5), B (-6,-1) and P(x, y) lie on the circumference of a circle of diameter AB. Find the equation of the moving point P.

Solution:

Exercise 6.3.3

- 1. A point P moves along the arc of a circle with center C (3,1). The arc passes through A(0,3) and B (7,s). Find
 - (a) the equation of the locus of point P
 - (b) the values of s

- 2. Given the points are A (1,-2) and B(2,-1). P is a point that moves in such a way that the ratio AP: BP = 1:2
 - (a) Find the equation of the locus of point P
 - (b) Show that point Q (0,-3) lies on the locus of point P.
 - (c) Find the equation of the straight line AQ
 - (d) Given that the straight line AQ intersects again the locus of point P at point D, find the coordinate of point D.

6.4 AREA OF POLYGON.

6.4.1 Finding the area of triangle

http://mathsmozac.blogspot.com

- Х
- Area of triangle ABC = $0 \leftrightarrow A$, B and C are _____
- If the coordinate of the vertices are arranged clockwise in the matrix form, the area of triangle obtained will be a ______ value.

6.4.2 Finding the area of quadrilateral

• Given a quadrilateral with vertices A(x_1, y_1), B(x_2, y_2), C(x_3, y_3) and D((x_4, y_4).

The area of quadrilateral ABCD = $\frac{1}{2}$

	$\frac{1}{2} [15 + (-q) + (-3) - (-1) - (-9) - 5q] = \pm 20$ $22 - 6q = \pm 40$ 22 - 6q = 40 or 22 - 6q = -40 $q = -3 \text{ or } q = 10\frac{1}{3}.$
 3. ABCD is a parallelogram. Given A (-2, 7), B(4, -3)and C(8, -11), find (a) point D (b) the area of the parallelogram. 	(a) Let the vertex D be (x, y). The midpoint of AC = $\left(\frac{-2+8}{2}, \frac{7+(-11)}{2}\right)$ = (3, -2) The midpoint of BD = $\left(\frac{4+x}{2}, \frac{-3+y}{2}\right)$ The midpoint of BD = The midpoint of AC. $\left(\frac{4+x}{2}, \frac{-3+y}{2}\right) = (3, -2)$ $\frac{4+x}{2} = 3$ and $\frac{-3+y}{2} = -2$ x = 2 and $y = -1$. Point D(2, -1). (b) The area = $\frac{1}{2} \begin{vmatrix} -2 & 2 & 8 & 4 & -2 \\ 7 & -1 & -11 & -3 & 7 \end{vmatrix}$ = $\frac{1}{2} (2+(-22)+(-24)+(28)-14-(-8)-(-44)-6))$ = $\frac{1}{2} (16)$ = 8 units ² .

EXERCISES 6.4

1. Given S(2, 2), T(0,7) and U(5,4) are the vertices of ΔSTU . Find the area of ΔSTU .

2. Find the possible values of k if the area of a triangle with vertices A(3, 2), B(-1, 6) and C(k, 5) is 8 units².

3. Show that the points (-9, 2), (3, 5) and (11, 7) are collinear

4. The vertices of quadrilateral PQRS are P(5, 2), Q(a, 2a), R(4, 7) and S(7, 3). Given the area of quadrilateral PQRS is 12 unit², find the possible values of *a*.

5. Given that the area of the quadrilateral with vertices A(5, -3), B(4, 2), C(-3, 4) and D(p, q) is 19 unit², show that 7p + 8q - 6 = 0.

SPM QUESTIONS.

1. The equations of two straight lines are $\frac{y}{5} + \frac{x}{3} = 1$ and 5y = 3x + 24. Determine whether the lines are perpendicular to each other. (2003/P1)

2. Diagram shows a straight line PQ with the equation $\frac{x}{2} + \frac{y}{3} = 1$. The points P lies on the x-axis and the point Q lies on the y-axis. (2004/P1)

Find the equation of a straight line perpendicular to PQ and passing through the point Q.

- 3. A point P moves along the arc of a circle with centre A(2, 3). The arc passes through Q(-2, 0) and R(5,k). (2003/P2)
 - (a) Find the equation of the locus of the point P,
 - (b) Find the values of k.

5. The point A is (-1, 3) and the point B is (4, 6). The point P moves such that PA:PB = 2:3. Find the equation of the locus P.

<u>ASSESSMENT (30 minutes)</u>

5. Find the equation of the straight line which is parallel to line 2y + x = 7 and passes through the point of intersection between the lines 2x - 3y = 1 and x - 2y = 3.

- 6. Given A(6, 0) and B(0,-8). The perpendicular bisector of AB cuts the axes at P and Q. Find
 - (a) the equation of PQ,
 - (b) the area of $\triangle POQ$, where O is the origin.

- 7. The point moves such that its distance from Q(0, 4) and R(2, 0) are always equal. The point S however moves such that its distance from T(2, 3) is always 4 units. The locus of point P and the locus of point S intersect at two points.

 - (a) Find the equation of the locus of the point P.
 (b) Show that the locus of the point S is x² + y² 4x 6y 3 = 0.
 - Find the coordinates of the points of intersection for the two loci. (c)

8. Find the possible values of k if the area of a triangles with vertices A(9, 2), B(4, 12) and C(k, 6) is 30 units².

Answer: Exercise 6.2.1 1. k = 42. m = -53. h = 84. $y = \frac{5}{3}x - 6$ 5. $y = -\frac{1}{4}x + \frac{5}{2}$

Exercise 6.2.

1. perpendicular to each other

2. y = x + 13. k = 154. h = 5

Exercise 6.2.3

1. x + y - 6 = 02. (a) 3x + 2y - 5 = 0(b) C(3, -2), D(0, -4)3. x + 2y - 10 = 04. k = 2 or k = 12.

Exercise 6.3.1.

1a. $x^{2} + y^{2} + 4x - 2y = 0$ b. $x^{2} + y^{2} + 6x + 2y + 3 = 0$ c. $x^{2} + y^{2} - 2y - 143 = 0$ d. $x^{2} + y^{2} - 4x - 5 = 0$

Exercise 6.3.2

1. x + y = 42. $x^{2} + y^{2} - 2x - 12y + 12 = 0$ 3. $x^{2} + y^{2} + 2x - 10y + 1 = 0$

18

Exercise 6.3.3 1 a. $x^2 + y^2 - 6x - 2y - 15 = 0$ b. s = 4 @ s = -22 a. $3x^2 + 3y^2 - 4x + 14y + 15 = 0$. b. substitute x = 0, y = -3c. y = x - 3d. $D(\frac{4}{3}, -\frac{5}{3})$

Exercise 6.4

1. $\frac{19}{2}$ units 2. k = -4, 43. $a = 8\frac{6}{7}$ or a = 2

SPM QUESTION 1. Perpendicular

2.
$$y = \frac{2}{3}x + 3$$

- 3. $x^2 + y^2 4x 6y 12 = 0$ 4. k = -1 or k = 7.

ASSESSMENT

1.
$$2y + x + 17 = 0$$

2. (a) $3x + 4y + 7 = 0$

(b)
$$2\frac{1}{24}$$
 unit²

3. (a)
$$x - 2y + 3 = 0$$

(c) $x = 5.76, -1.36$
 $y = 4.38, 0.82$