Q1 Find the distance between the points of intersection of the curve $y = 3 + \frac{4}{x}$ and the line y = 4x + 9.

Q2. The functions f and g are defined for real values of x by

$$f(x) = \sqrt{x-1} - 3$$
 for $x > 1$,

$$g(x) = \frac{x-2}{2x-3}$$
 for $x > 2$.

(i) Find gf(37). [2]

(ii) Find an expression for $f^{-1}(x)$. [2]

(iii) Find an expression for $g^{-1}(x)$. [2]

Q3 (i) Prove that	secx cosecx -	$\cot x =$	tan x
-------------------	---------------	------------	-------

(ii) Use the result from part (i) to solve the equation $\sec x \csc x = 3 \cot x$ for $0^{\circ} < x < 360^{\circ}$. [4]

Q5 (i) Solve the equation
$$2t = 9 + \frac{5}{t}$$
. [3]

(ii) Hence, or otherwise, solve the equation
$$2x^{\frac{1}{2}} = 9 + 5x^{-\frac{1}{2}}$$
. [3]

The figure shows a rectangular metal block of length 4x cm, with a cross-section which is a square of side x cm and area A cm². The block is heated and the area of the cross-section increases at a constant rate of 0.003 cm²s⁻¹. Find

(i) $\frac{dA}{dx}$ in terms of x, [1]

(ii) the rate of increase of x when x = 5, [3]

(iii) the rate of increase of the volume of the block when x = 5. [4]

Q7 Differentiate, with respect to x,

(i)
$$(1-2x)^{20}$$
, [2]

(ii)
$$x^2 \ln x$$
, [3]

(iii)
$$\frac{\tan(2x+1)}{x}$$
. [3]

- Q8 The diagram shows a semicircle, centre O, of radius 8 cm. The radius OC makes an angle of 1.2 radians with the radius OB. The arc CD of a circle has centre A and the point D lies on OB. Find the area of
 - (i) sector COB, [2]
 - (ii) sector CAD,
 - (iii) the shaded region.

[3]

[5]

Q9 The line 2y = 3x - 6 intersects the curve xy = 12 at the points P and Q. Find the equation of the perpendicular bisector of PQ. [8]

Q10 (i) Find the first 4 terms in the expansion of $(2+x^2)^6$ in ascending powers of x. [4]

(ii) Find the term independent of x in the expansion of
$$(2+x^2)^6 \left(1-\frac{3}{x^2}\right)^2$$
. [3]

Q11 The table shows experimental values of two variables x and y.

х	1	2	3	4	5
y	3.40	2.92	2.93	3.10	3.34

It is known that x and y are related by the equation $y = \frac{a}{\sqrt{x}} + bx$, where a and b are constants.

(i) Complete the following table.

$x\sqrt{x}$			
$y\sqrt{x}$			

[1]

[3]

- (ii) On the grid on page 11 plot $y\sqrt{x}$ against $x\sqrt{x}$ and draw a straight line graph.
- (iii) Use your graph to estimate the value of a and of b. [3]

(iv) Estimate the value of y when x is 1.5. [1]

