## Revision Workbook

## O Level \& IGCSE Computer Science

## P1: Theory of Computer Science

## Inqilab Ruknuddin Patel



Computer seienee with Inqilab patel


## Syllabus content \& assessment at a glance

| Sections | Topics |
| :--- | :--- |
| Section 1 | Theory of Computer Science |
|  | 1.1 Data representation |
|  | 1.1.1 Binary systems |
|  | 1.1.2 Hexadecimal |
|  | 1.1.3 Data storage |
|  | 1.2 Communication and Internet technologies |
|  | 1.2.1 Data transmission |
|  | 1.2.2 Security aspects |
|  | 1.2.3 Internet principles of operation |
|  | 1.3 Hardware and software |
|  | 1.3.1 Logic gates |
|  | 1.3.2Computer architecture and the fetch-execute cycle |
|  | 1.3.3 Input devices |
|  | 1.3.4 Output devices |
|  | 1.3.5 Memory, storage devices and media |
|  | 1.3.6 Operating systems |
|  | 1.3.7High- and low-level languages and their translators |
|  | 1.4 Security |
|  | 1.5 Ethics |
| Section 2 | Practical Problem-solving and Programming |
|  | 2.1 Algorithm design and problem-solving |
|  | 2.1.1 Problem-solving and design |
|  | 2.1.2 Pseudocode and flowcharts |
|  | 2.2 Programming |
|  | 2.2 .1 Programming concepts |
|  | 2.2 .2 Data structures; arrays |
|  | 2.3 Databases |

## Assessment at a glance

| Components | Weighting |
| :--- | :--- |
| Paper 1 Theory <br> This written paper contains short-answer and structured questions. All <br> questions are compulsory. <br> No calculators are permitted in this paper. <br> Externally assessed. | $60 \%$ |
| Paper 2 Problem-solving and Programming 1 hour 45 minutes <br> This written paper contains short-answer and structured questions. All <br> questions are compulsory. 20 of the marks for this paper are from questions <br> set on the pre-release material. 1 <br> No calculators are permitted in this paper. <br> Externally assessed. | $\mathbf{4 0 \%}$ |

## ComputerScience with Inqilab Patel

Page |3

## Revision Checklist

| $\begin{gathered} \text { S } \\ \text { No } \end{gathered}$ | Learning Outcome | -1 | フ | - |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1.1.1: Binary systems |  |  |  |  |  |
| 1 | Recognize the use of binary numbers in computer systems |  |  |  |  |  |
| 2 | Denary-to-binary and binary-to- denary conversion |  |  |  |  |  |
| 3 | Concept of a byte and how the byte is used to measure memory size |  |  |  |  |  |
| 4 | Use binary in computer registers for a given application (such as in robotics, digital instruments and counting systems) |  |  |  |  |  |
|  | 1.1.2: Hexadecimal |  |  |  |  |  |
| 5 | Represent integers as hexadecimal numbers |  |  |  |  |  |
| 6 | Reasons for choosing hexadecimal to represent numbers |  |  |  |  |  |
| 7 | Convert positive hexadecimal integers to and from denary |  |  |  |  |  |
| 8 | Convert positive hexadecimal integers to and from binary |  |  |  |  |  |
| 9 | Represent numbers stored in registers and main memory as hexadecimal |  |  |  |  |  |
| 10 | Identify current uses of hexadecimal numbers in computing, such as defining colours in Hypertext Markup Language (HTML), Media Access Control (MAC) addresses, assembly languages and machine code, debugging |  |  |  |  |  |
|  | 1.2.1: Serial and parallel data transmission |  |  |  |  |  |
| 11 | Show understanding of what is meant by transmission of data |  |  |  |  |  |
| 12 | Distinguish between serial and parallel data transmission |  |  |  |  |  |
| 13 | Distinguish between simplex, duplex and half-duplex data transmission |  |  |  |  |  |
| 14 | Reasons for choosing serial or parallel data transmission |  |  |  |  |  |
| 15 | Show understanding of the need to check for errors |  |  |  |  |  |
| 16 | Explain how parity bits are used for error detection |  |  |  |  |  |
| 17 | Show understanding of the use of serial and parallel data transmission, in Universal Serial Bus (USB) and Integrated Circuit (IC) |  |  |  |  |  |
|  | 1.2.3: Internet principles of operation |  |  |  |  |  |
| 18 | Show understanding of the role of the browser and Internet server |  |  |  |  |  |
| 19 | What is meant by hypertext transfer protocol (http and https) and HTML |  |  |  |  |  |
| 20 | Distinguish between HTML structure and presentation |  |  |  |  |  |
| 21 | Show understanding of the concepts of MAC address, Internet Protocol (IP) address, Uniform Resource Locator (URL) and cookies |  |  |  |  |  |
|  | 1.3.1: Logic gates |  |  |  |  |  |
| 22 | use logic gates to create electronic circuits |  |  |  |  |  |
| 23 | Understand and define the functions of NOT, AND, OR, NAND, NOR and XOR (EOR) gates, including the binary output produced from all the possible binary inputs (all gates, except the NOT gate, will have 2 inputs only) |  |  |  |  |  |
| 24 | Draw truth tables and recognise a logic gate from its truth table |  |  |  |  |  |
| 25 | Produce truth tables for given logic circuits, |  |  |  |  |  |
| 26 | Produce a logic circuit to solve a given problem or to implement a given written |  |  |  |  |  |



| $\begin{gathered} \text { S } \\ \text { No } \end{gathered}$ | Learning Outcome | -1 |  | $\begin{aligned} & -1 \\ & 0 \\ & 0 \\ & 0 \\ & \mathbf{N} \\ & \vdots \\ & \hline \mathbf{D} \\ & \hline \end{aligned}$ |  | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | logic statement |  |  |  |  |  |
| 27 | Write down logic statement of given logic circuit |  |  |  |  |  |
| 28 | Simplify the logic circuit |  |  |  |  |  |
| 29 | Boolean algebra |  |  |  |  |  |
| 30 | Solving past paper questions |  |  |  |  |  |
|  | 1.3.2: Computer architecture and the fetch-execute cycle |  |  |  |  |  |
| 31 | Show understanding of the basic Von Neumann model for a computer system and the stored program concept (program instructions and data are stored in main memory and instructions are fetched and executed one after another) |  |  |  |  |  |
| 32 | Describe the stages of the fetch-execute cycle |  |  |  |  |  |
|  | 1.3.3: Input devices |  |  |  |  |  |
| 33 | Describe the principles of operation (how each device works) of these input devices: 2D and 3D scanners, barcode readers, Quick Response (QR) code readers, digital cameras, keyboards, mice, touch screens, interactive whiteboard, microphones |  |  |  |  |  |
| 34 | Describe how these principles are applied to real-life scenarios, for example: scanning of passports at airports, barcode readers at supermarket checkouts, and touch screens on mobile devices |  |  |  |  |  |
| 35 | Describe how a range of sensors can be used to input data into a computer system, including light, temperature, magnetic field, gas, pressure, moisture, humidity, ph and motion |  |  |  |  |  |
| 36 | Describe how these sensors are used in real-life scenarios, for example: street lights, security devices, pollution control, games, and household and industrial applications |  |  |  |  |  |
|  | 1.3.4: Output devices |  |  |  |  |  |
| 37 | Describe the principles of operation of a range of output devices, including: inkjet, laser and 3D printers; 2D and 3D cutters; speakers and headphones; actuators; flat-panel display screens, including Liquid Crystal Display (LCD) and Light-Emitting Diodes (LED); and LCD projectors and Digital Light Projectors (DLP) |  |  |  |  |  |
| 38 | Describe how these principles are applied to real-life scenarios, for example: printing single items on demand or in large volumes; use of small screens on mobile devices |  |  |  |  |  |
|  | 1.3.5: Memory, storage devices and media |  |  |  |  |  |
| 39 | Show understanding of the difference between: primary, secondary and off-line storage and provide examples of each, such as, primary: Read Only Memory (ROM), and Random Access Memory (RAM) secondary: hard disk drive (HDD) and Solid State Drives (SSDs); off-line: Digital Versatile Disks (DVDs), Compact Disks (CDs), Blu-ray, USB flash memory and removable disks |  |  |  |  |  |
| 40 | Describe the principles of operation of a range of types of storage devices and media including magnetic, optical and solid state |  |  |  |  |  |

## Computer:Science with Inqilab Patal

## Page |5

| $\begin{gathered} \text { S } \\ \text { No } \end{gathered}$ | Learning Outcome | - |  | $\begin{aligned} & \text {-1 } \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & \hline \mathbf{D} \\ & \hline \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 41 | Describe how these principles are applied to currently available storage solutions, such as SSDs, hard disk drives, USB flash memory, DVDs, CDs and Blu-ray |  |  |  |  |  |
| 42 | Calculate the storage requirement of a file |  |  |  |  |  |
|  | 1.1.3: Data storage |  |  |  |  |  |
| 43 | File formats sound (music), pictures, video, text and numbers |  |  |  |  |  |
| 44 | Identify and describe methods of error detection and correction, such as parity checks, check digits, checksums and Automatic Repeat requests (ARQ) |  |  |  |  |  |
| 45 | Concept of (MIDI) files, jpeg files, MP3 and MP4 files |  |  |  |  |  |
| 46 | File compression (lossless and lossy compression algorithms) applied to music/video, photos and text files |  |  |  |  |  |
|  | 1.3.6: Operating systems |  |  |  |  |  |
| 47 | Describe the purpose of an operating system <br> - the idea of system software as different from applications software <br> - general tasks and facilities of an operating system - for processor management, it is helpful to demonstrate Windows Task Manager <br> - the role of the operating system (OS) in file management <br> - how peripheral devices, such as keyboards and printers, must be controlled and responded to by the operating system <br> - how communication between the computer and peripherals must be controlled and errors detected. |  |  |  |  |  |
| 48 | Show understanding of the following terms and the need for interrupts <br> - buffer <br> - polling <br> - interrupts <br> - handshaking <br> - checksum. |  |  |  |  |  |
| 49 | Discuss the main differences between command line interfaces CLIs and graphical user interfaces GUIs and their respective advantages and disadvantages. |  |  |  |  |  |
|  | 1.3.7: High- and low-level languages and their translators |  |  |  |  |  |
| 50 | Show understanding of the need for both high-level and low-level languages |  |  |  |  |  |
| 51 | Show understanding of the need for compilers when translating programs written in a high-level language |  |  |  |  |  |
| 52 | Show understanding of the use of interpreters with high-level language programs |  |  |  |  |  |
| 53 | Need for assemblers when translating programs written in assembly language |  |  |  |  |  |
| 54 | Solving past paper questions |  |  |  |  |  |
|  | 1.2.2: Security aspects |  |  |  |  |  |
| 55 | Show understanding of the security aspects of using the Internet and understand what methods are available to help minimise the risks |  |  |  |  |  |
| 56 | Show understanding of the Internet risks associated with malware, including viruses, spyware and hacking |  |  |  |  |  |
| 57 | Explain how anti-virus and other protection software helps to protect the user |  |  |  |  |  |

+923002724734 /ingilabpatel @inqilab inqilab-patel

Page 6

| $\begin{gathered} \text { S } \\ \text { No } \end{gathered}$ | Learning Outcome | －1 |  | － |  | － |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | from security risks（this also links into section 1.4 of the syllabus） |  |  |  |  |  |
|  | 1．4 Data integrity and security |  |  |  |  |  |
| 58 | Show understanding of how data are kept safe when stored and transmitted， including： <br> o use of passwords，both entered at a keyboard and biometric <br> o use of firewalls，both software and hardware，including proxy servers <br> o use of security protocols such as Secure Socket Layer（SSL）and Transport Layer Security（TLS） <br> o use of symmetric encryption（plain text，cypher text and use of a key）showing understanding that increasing the length of a key increases the strength of the encryption |  |  |  |  |  |
| 59 | Show understanding of the need to keep online systems safe from attacks including denial of service attacks，phishing，pharming |  |  |  |  |  |
| 60 | Show understanding of the need to keep data safe from accidental damage， including corruption and human errors |  |  |  |  |  |
| 61 | Show understanding of the need to keep data safe from malicious actions， including unauthorised viewing，deleting，copying and corruption |  |  |  |  |  |
| 62 | Describe how the knowledge from 1．4．1，1．4．2 and 1．4．3 can be applied to real－life scenarios including，for example，online banking，shopping |  |  |  |  |  |
|  | 1．5：ethics |  |  |  |  |  |
| 63 | Show understanding of computer ethics，including copyright issues and plagiarism |  |  |  |  |  |
| 64 | Distinguish between free software，freeware and shareware |  |  |  |  |  |
| 65 | Show understanding of the ethical issues raised by the spread of electronic communication and computer systems，including hacking，cracking and production of malware |  |  |  |  |  |

## Page |7

### 1.1 Data representation

## Chapter at a glance:

The basic building block in all computers is the binary number system.
A binary digit is commonly referred to as a BIT; 8 bits are usually referred to as a BYTE.
The byte is the smallest unit of memory in a computer.
It should be pointed out here that there is some confusion in the naming of memory sizes.
The unit was established by the International Electrotechnical Commission (IEC) in 1998, has been accepted for use by all major standards organizations, and is part of the International System of Quantities. The kibibyte was designed to replace the kilobyte in those computer science contexts in which the term kilobyte is used to mean 1024 bytes. The interpretation of the kilobyte to denote 1024 bytes, conflicting with the SI definition of the prefix kilo (1000), is still common, mostly in informal computer science contexts.
The IEC convention is now adopted by some organisations. Manufacturers of storage devices often use the denary system to measure storage size. For example:
1 kilobyte = 1000 byte
1 megabyte = 1000000 bytes
1 gigabyte $=1000000000$ bytes
1 terabyte $=1000000000000$ bytes and so on.
The IEC convention for computer internal memories (including RAM) becomes:
1 kibibyte $(1 \mathrm{KiB})=1024$ bytes
1 mebibyte $(1 \mathrm{MiB})=1048576$ bytes
1 gibibyte $(1 \mathrm{GiB})=1073741824$ bytes
1 tebibyte ( 1 TiB ) $=1099511627776$ bytes and so on
Example Question: A company advertises its backup memory device as having 500 GB of storage. A customer wishes to know how many 8 MB files could be stored on the device. The company claimed that up to 62500 files (assuming each file is 8 MB ) could be stored. The customer calculated that 64000 files could be stored.
Explain the difference between these two storage values. Show any calculations you use in your explanation.

- customer calculation based on 1 GByte $=1024$ Mbyte - so $(500 \times 1024) / 8=64000$ files
- giving the difference of 1500 files

Binary-to-Decimal \& Denary-to-Binary Conversion -use binary notation (place values) i.e. 128, 64, 32, 16, 8, 4, 2, 1.
For Binary-to-Hexadecimal conversion firstly groups of 4 bits are made from right to left and each group is converted separately using 8, 4, 2, 1 notation.
For Hexadecimal-to-Binary conversion each hex digit is separated by other and then each hex digit is converted separately using 8421 notation.
For Denary-to-Hexadecimal conversion LCM of the denary number is taken.
For Hexadecimal-to-Denary conversion hexadecimal notation (place value) is used eg. 4096
+923002724734
$\frac{1}{2}$ /inqilabpatel inqifa6-patel

## Page 18

Memory Dump is display of memory contents and address in hexadecimal on screen or printed on paper. It is powerful fault-tracing tool for expert programmers.
Hexadecimal are used in HTML to represent colour codes (RGB Model). For example: \# ff0000 for bright red and \#980000 for darker red.
MAC Addresses are unique number of NIC (Wi-Fi, Bluetooth. or wired connection i.e. Ethernet). They are 48 bit long, but converted into 12 hexadecimal digits (in 6 pairs) making them short and easier to understand. For 00-1C-2A-FF-01. $1^{\text {st }} 3$ pairs represent manufacturer while the other represent serial number of product.
48 bit long address means there are $281,474,976,710,656$ possible MAC addresses in the world.
UAA (Universally Administered MAC Address) are most common. These are the MAC addresses set by manufacturer
LAA (Locally Administered MAC Addresses) are changed locally to bypass firewall, or to assign MAC address of specific format.

## URL encoding:

Web addresses can be written using hexadecimal rather than denary. Hexadecimal codes are preceded by a \% sign. For example, the word "www.ruknuddin.com" is written as:

|  | in hex | $\quad \mathrm{r}$ | u | k | n | u | d | d | i |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\% 72$ | $\% 75$ | $\% 6 \mathrm{~B}$ | $\% 6 \mathrm{E}$ | $\% 75$ | $\% 64$ | $\% 64$ | $\% 69$ | $\% 6 \mathrm{E}$ |  |


| W | w | w | . | $r$ | $u$ | $k$ | n | u | d | d | i | n | . | c | 0 | m |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\% 77$ | $\% 77$ | $\% 77$ | $\% 2 \mathrm{E}$ | $\% 72$ | $\% 75$ | $\% 6 \mathrm{~B}$ | $\% 6 \mathrm{E}$ | $\% 75$ | $\% 64$ | $\% 64$ | $\% 69$ | $\% 6 \mathrm{E}$ | $\% 2 \mathrm{E}$ | $\% 63$ | $\% 6 \mathrm{~F}$ | $\% 6 \mathrm{D}$ |

Some characters are not allowed in URL. URL encoding converts characters into a format that can be transmitted over the Internet.
For example
$>$ \%20 - is used in URL in place of <space> not allowed in a URL, \%20 is the coding for a space (32 in denary)
$>$ ? - separates the URL from all parameters or variables
e.g. for query to search Inqilab patel in Google
https://www.google.com.pk/search? $\mathbf{? q}=$ inqilab\%20patel
here " $q$ " is variable for query "?" separates it from URL
"https://www.google.com.pk/search"
while"\%20"is used for the space between "inqilab" and "patel"


Machine code and Assembly code are examples of low-level languages and are used by software developers when producing, for example, computer games. They look difficult but they have many advantages at the development stage of software writing (especially when trying to locate errors in
+923002724734 /inqilabpatel inqilab-patel

## Page $\mid 9$

the code). Using hexadecimal makes it much easier, faster and less error prone to write code compared to binary.
Character: Any text, number or symbol.

## Why compress on the Internet?

The Internet can be slow at times, especially in it's early days relying on early 56Kbps modems as opposed to the 3-4 Mbps average. Therefore if you could compress the files that were being sent on the Internet, then you sent smaller files, and smaller file sizes meant faster downloads. It also frees up the network and avoids clogging up the bandwidth.

Compression: The method of reducing file size.
Lossy Compression: The file is reduced in size for transmission and storage; by permanently removing some redundant information from the file

Lossless Compression: The file is reduced in size for transmission and storage; it is then put back together again later producing a file identical to the original

MIDI: A MIDI file consists of a list of commands that instruct a device like an electronic organ, how to produce a particular sound or musical note.

Examples of MIDI commands include:

- note on/off: this indicates that a key has been pressed/released to produce/stop producing a musical note
- key pressure: this indicates how hard the key has been pressed (this could indicate loudness of the music note or whether any vibrato has been used, and so on).
The whole piece of music will have been stored as a series of commands but no actual musical notes. Their size, compared with an MP3 file, is considerably smaller. MIDI is essentially a communications protocol that allows electronic musical instruments to interact with each other. The MIDI protocol uses 8 -bit serial transmission with one start bit and one stop bit, and is therefore asynchronous. MIDI is essentially a communications protocol that allows electronic musical instruments to interact with each other.

MP3: File compression system for music which does not noticeably affect the quality of the sound. This is done using file compression algorithms which use PERCEPTUAL MUSIC SHAPING; this essentially removes sounds that the human ear can't hear properly.

For example, an 50 megabyte music CD can be reduced to 5 megabytes. $50 \mathrm{MB} \times 90 / 100=45 \mathrm{MB}$ reduced. $50 \mathrm{MB} \times 10 / 100=5 \mathrm{MB}$ new file size.
MP3 technology reduces the size of a normal music file by about 90 per cent.
MP4: MPEG-4 (MP4) format allows the storage of multimedia files rather than just sound. Music, videos, photos and animation can all be stored in the MP4 format. Videos, for example, could be streamed over the internet using the MP4 format. It uses lossy compression.
$+923002724734$
/inqialabpatel inqilab-patel

JPEG: File compression format designed to make photo files smaller in size for storage and for transmission. It uses lossy compression and compresses a file between factor of 5 to 15 .


Uncompressed raw image

For example 2000 pixels wide and 2000 pixels high image will have $2000 \times 2000=4,000,000$ pixels. This is often referred to as a 4-megapixel image. A raw bitmap can often be referred to as a TIFF or BMP image (file extension .TIF or .BMP). The file size of this image is determined by the number of pixels. In the previous example, a 4megapixel image would be 4 megapixels $\times 3$ colours(RGB) $=12$ megabytes.
This image will be compressed at factor of 5 $(12 / 5=2.5 \mathrm{mb})$ to factor of $15(12 / 15=0.8 \mathrm{mb})$.
Text and number file formats: Text and


Compressed image, after applying factor of 5
numbers are usually stored in an ASCII format.
Text files are also compressed. Lossless compression method is used for text and numbers. These use complex algorithms that work on redundancy or repeated sections of words (e.g. OU in yOUr, cOUntry or mOUntain).


The following section shows, in very simple terms, how this could work:
Algorithm: step-by-step set of instruction to solve a problem.
Register: Immediate access store in the processor. It can store small piece of data.

## Topical Past Paper Questions

## Summer 15 P11)

Q1) An alarm clock is controlled by a microprocessor. It uses the 24 hour clock. The hour is represented by an 8-bit register, $\mathbf{A}$, and the number of minutes is represented by another 8-bit register, B.
(a) Identify what time is represented by the following two 8-bit registers.


Page |11
(b) An alarm has been set for 07:30. Two 8-bit registers, $\mathbf{C}$ and $\mathbf{D}$, are used to represent the hours and minutes of the alarm time. Show how 07:30 would be represented by these two registers:

## c

$\square$
Hours

D


Minutes
(c) Describe how the microprocessor can determine when to sound the clock alarm
$\qquad$
$\qquad$

## Marking Scheme

a) Hours 18 Minutes: 53 [2]

| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | hours ("C") |  |  |  |  |  |

c) Any three from:

- reads values in registers "C" and "D"
- and checks the values against those stored in registers "A" and "B"
(NOTE: the first two statements can be interchanged, i.e. "A" and "B" read first)
- If values in corresponding registers are the same
- the microprocessor sends a signal to sound alarm/ring [3]
(d) Any three from:
- uses a light sensor
- sends signal/data back to microprocessor
- signal/data converted to digital (using ADC)
- value compared by microprocessor with pre-set/stored value
- if value $<$ stored value, signal sent by microprocessor
- ... to the voltage supply (unit)
- ... "value" of signal determines voltage supplied/brightness of LED

```[3]
```


## Summer 15 P12)

Q2) Letters from the alphabet are represented in a computer by the following denary (base 10) values:
$A=97$
$G=103$
I = 105
$L=108$
$N=110$

The word "A L I G N" is stored as: 97108105103110
(a) Convert each of the five values to binary. The first one has been done for you.[2]

| Letter | Binary value |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A (97): | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
| L(108): |  |  |  |  |  |  |  |  |
| I (105): |  |  |  |  |  |  |  |  |
| G (103): |  |  |  |  |  |  |  |  |
| N (110): |  |  |  |  |  |  |  |  |

(b) An encryption system works by shifting the binary value for a letter one place to the left. "A" then
+923002724734 $f$ /inqilabpatel inqila6-patel

Page |12
becomes:

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline
\end{array}
$$

This binary value is then converted to hexadecimal; the hexadecimal value for " $A$ " will be: $\mathbf{C} 2$. For the two letters "L" and "G", shift the binary values one place to the left and convert these values into hexadecimal:
hexadecimal
L:


Marking Scheme
(a) 1 mark for two correct lines, 2 marks for four correct lines
$L$ (108):
I (105):
G (103):
N (110):

| 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |

(b) 1 mark for each correct binary value 1 mark for each correct hexadecimal value
hexidecimal

| L: | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | D8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| G: | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | CE |

## Winter 15 P12)

Q3a) (i) Convert the following two hexadecimal numbers into binary:
FA 7
D 3 E

FA 7


D 3 E

$\square$
$\square$
(ii) Now perform the AND (logic) operation on each corresponding pair of binary bits in the two numbers from part (i).

|  |  |  |  |
| :--- | :--- | :--- | :--- |


|  |  |  |  |
| :--- | :--- | :--- | :--- |

$\square$
(iii) Convert your answer in part (ii) into hexadecimal.

Page |13
(b) (i) The following code shows HTML 'tag' pairs on either side of the text stating the colour that each creates.
<font color " \# F F 0000 " > RED </font>
<font color " \# 00 F F 00 " > GREEN </font>
<font color " \# 0000 FF " > BLUE </font>
<font color " \# X " > YELLOW </font>
<font color " \# Y " > MAGENTA </font>
<font color " \# Z " > CYAN </font>
Yellow is a combination of red and green, magenta a combination of red and blue and cyan a combination of green and blue.
State what 6-digit hexadecimal values should replace $\mathrm{X}, \mathrm{Y}$ and Z in the above code.
X
Y
Z
(ii) Describe how other colours, such as a darker shade of blue, are created.
(c) $1 \mathrm{~A}-16-\mathrm{C} 5-22-\mathrm{FF}-\mathrm{FF}$ is an example of a MAC address.
(i) Identify what the first six and last six hexadecimal digits represent.

First six digits $\qquad$
$\qquad$
Last six digits
$\qquad$
$\qquad$
(ii) State why MAC addresses are used.

## Marking Scheme

## Q3a i)

FAT:


D 3 E:

(ii) 2 marks if all correct, 1 mark for 2 correct conversions - Follow through

(iii) 2 marks if all correct, 1 mark for 2 correct conversions - Follow through

D 26 [2]
(b) (i) (X) FF FF 00
+923002724734
@inquíab
/inqilabpatel
inqílab-patel

Page |14
(Y) FF 00 FF
(Z) 00 FF FF [3]
(ii) - hex values between 0 to $F$ are combined together to create a hex code

- different combinations in hex codes will create different shades/tones/colours [2]
(c) (i) First six digits: manufacturer code/manufacturer ID

Last six digits: serial number/serial ID of device/product [2]
(ii) Allows all devices to be uniquely identified [1]

## Winter 15 p13

Q4b) The information from seven sensors is sent to an engine management system in the car. The status of each sensor is stored in an 8 -bit register; a value of 1 indicates a fault condition


For example, a register showing 01011000 indicates:

- temperature too high
- fuel pressure too low
- voltage too low
(i) Identify the fault condition(s) that the following register indicates:

| 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\qquad$
(ii) The system uses odd parity.

Write the correct parity bit in each register.

|  | 1 | 1 | 1 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


|  | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(iii) A car has a faulty airbag and the CO level is too high.

Write what should be contained in the 8-bit register.

|  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(iv) Give the hexadecimal value of the binary number shown in part (iii).
$\qquad$
$\qquad$

## Winter 15 P11)

Q5a) Convert the hexadecimal number B5 into binary:

## Page |15

Convert the binary number 11110110 into hexadecimal:
(b) Give two examples where hexadecimal numbers are used in computer science.

1:
2: $\qquad$

## [2]

(c) State two benefits of using hexadecimal numbers in computer science.

1: $\qquad$

2 : $\qquad$

Q6) A CD is being used to store music. Each minute's worth of recording takes up 12 megabytes. a The CD contains nine tracks which are the following length (in minutes): 3, 5, 6, 4, 5, 2, 7, 8, 8. How much memory would these nine tracks occupy on the CD?
b If the CD was downloaded to a computer and then all the tracks were put through an MP3 compression algorithm, how much memory would the nine tracks now occupy (you may assume a 90 per cent file reduction size)?
c Find the average size of each of the MP3 tracks, and then estimate how many MP3 files could be stored on an 800 megabyte CD.

Q7 a) Nicolae made the following statement:
"data input is validated by typing it in twice"
State why this statement is incorrect.
(b) Nicolae needs to send 30 photos to a friend and he chooses to send all 30 together as a single email attachment. Each photo is 1.8 MB in size, but the maximum possible attachment size is only 20 MB .
State how Nicolae can solve this problem.

Q8) Characters can be represented in a computer by a numerical code.
The following list shows 16 characters with their numerical codes in denary:

| $\mathrm{a}=97$ | $\mathrm{~d}=100$ | $\mathrm{~h}=104$ | $\mathrm{~m}=109$ | $\mathrm{t}=116$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~b}=98$ | $\mathrm{e}=101$ | $\mathrm{i}=105$ | $0=111$ | $\mathrm{u}=117$ |
| $\mathrm{c}=99$ | $\mathrm{~g}=103$ | $\mathrm{k}=107$ | $\mathrm{r}=114$ | $\mathrm{w}=119$ |

. $=46$ (code for the full stop)
Web addresses can be written using hexadecimal rather than denary. Hexadecimal codes are preceded by a \% sign. For example, the word "c a g e" is written as:

| either | 99 | 97 | 103 | 101 | (in denary) |
| :--- | :--- | :--- | :--- | :---: | :--- |
| or | $\% 63$ | $\% 61$ | $\% 67$ | $\% 65$ | (in hexadecimal) |

(a) Complete the conversion of the following web address into hexadecimal: [3]

| W | W | w | . | c | i | e | . | o | r | g | . | u | K |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\% 77$ | $\% 77$ | $\% 77$ |  |  |  |  |  |  |  |  |  |  |  |

+923002724734
/inqilabpatel
@inqíab
inqifa6-patel

Page |16
b) Complete the web address from the given hexadecimal codes: [3]

| \%77 | \%77 | \%77 | \%2E | \%72 | \%6F | \%63 | \%6B | \%69 | \%63 | \%74 | \%2E | \%63 | \%6F | \%6D |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| W | W | w |  |  |  |  |  |  |  |  |  |  |  |  |

## Summer 2016 2210_0478 qp 11_13

Q9) Hexadecimal codes are used in MAC addresses.
(a) State what is meant by the term MAC.
(b) Explain what the hexadecimal code in a MAC address represents.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
Q10) Each seat on a flight is uniquely identified on an LCD above the seat. For example, seat 035C is shown as:


The first three characters are digits that represent the row.
The fourth character is the seat position in that row. This is a single letter, A to F, that is stored as a hexadecimal value.
Each of the four display characters can be stored in a 4-bit register. For example, 0 and $C$ would be represented as:

|  | 8 | $4{ }^{4} 2$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 0 : | 0 | 0 | 0 | 0 |
| C: | 1 | 1 | 0 | 0 |

(a) Show how the 4-bit registers would store the remaining two characters, 3 and 5.

3


5

(b) Identify which seat is stored in the following 4-bit registers.
[2]

| 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- |
| 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |

Q11) (a) Name the following type of barcode:
+923002724734
@inqíab
/inqilabpatel
inqifa6-patel

Page |17

(b) The barcode in part (a) contains the denary value 2640 Convert this value to hexadecimal.

Write the value as a 12-bit binary number.
(c) An airport uses the type of barcode shown in part (a) to advertise local places of interest. Describe how a visitor landing at the airport could use these barcodes to help plan their visit.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
Marking Scheme
Q9) (a) media access control [1]
(b) Any three from:

- hardware/physical address
- unique address/number associated (with network card in) a device/computer
- usually 48/64 bits (12/16 hex digits)
- first 6/8 digits = manufacturer code/ID of device (NIC)
- last 6/8 digits = serial number of device (NIC) [3]

Q10a)

3 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- |

$5 \quad$| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | 1 |
| :--- | :--- | :--- | :--- |

b)


Q11(a) QR (quick response) Code [1]
(b) - A 50 (1 mark)

(c) Any three from:

- visitor scans the QR code with (the camera on) the mobile device
- App is used to read/interpret the QR code
- links to a website/opens a document ...

+923002724734
@inqíab
/inqilabpatel
inqifa6-patel


## Page |18

- ... to access local tourist information
- can store the QR code to refer to again for the information [3]


## Summer 2016 2210_0478 P12

Q12)(a) Convert the following hexadecimal number into 12-bit binary:

[3]
(b) The 2016 Olympic Games will be held in Rio de Janeiro. A timer that counts down to the opening of the Games is shown on a microprocessor-controlled display.
The number of hours, minutes and seconds until the Games open are held in three 8-bit registers.
The present register values are:

| 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 105$ hours


| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 32$ minutes


| 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 20 seconds

The timer will count down in seconds.
(i) Show the values in each 8-bit register 30 seconds after the time shown above:


## seconds

(ii) Write the hexadecimal value of the minutes register from part (b)(i).

## Winter 15 p13

Q13) MP3 file compression reduces the size of a music file by $90 \%$.
(a) A music track is 80 MB in size.

Calculate the file size after compression.

How many MP3 files of the size calculated above could be stored on an 800 MB CD?
(b) (i) Explain how MP3 files retain most of the original music quality.


## Page |19

$\qquad$
$\qquad$
$\qquad$

(ii) State the type of file compression used in MP3 files.
...........................................................................................................
(iii) Name another file compression format.

(ii) State the type of file compression used in MP3 files.
...........................................................................................................
(iii) Name another file compression format. .....  ..... [1] .....  ..... [1]
(ii) State the type of file compression used in
....................................................................
(iii) Name another file compression format.
(ii) State the type of file compression used in
....................................................................
(iii) Name another file compression format. ..... [1] ..... [1] ..... ] ..... ] ..... 1] ..... 1]
Marking Scheme
(a) 8 MB100 [2](b) (i) Any two from:- removes sounds human ear can't hear very well- if two sounds played at same time, softer sound removed

- uses perceptual music shaping [2]
(ii) Lossy [1]
(iii) One from, for example:
- jpeg
- MP4
- zip
- gif [1]
Q14) (a) Describe what is meant by lossy and lossless compression when applied to files.
Lossy:
a)
$\qquad$


## Lossless:

$\qquad$
$\qquad$

Page |20

| 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

105 Hours

| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

32 Minutes

| 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

20 Seconds

The timer will count down in seconds.
(i) Show the values in each 8-bit register 30 seconds after the time shown above:[3]


|  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |


| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |

## seconds <br> Hours

Minutes

Seconds
(ii) Write the hexadecimal value of the minutes register from part (b)(i).

Q 16) Nigel wants to send a large text file electronically to Mashuda.
(a) Describe how the size of the text file can be reduced.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## [3]

(b) This file will be transmitted to Mashuda as an email attachment. Mashuda then stores it on her computer.
Explain how checksums can be used to verify that the file has not been corrupted during transmission or data storage.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
+923002724734
/inqilabpatel

## Marking Scheme

Q15) (a) 1 mark for each nibble
010010101111 [3]
(b) (i) 01101001105 hours 1 mark

0001111131 minutes 1 mark
0011001050 seconds 1 mark [3]
(ii) 1F [1]

Q16) (a) Any three from:

- The file can be compressed
- The compression that is used is lossless (not lossy)
- use of a compression algorithm
- repeated words can be indexed
- repeated word sections (e.g. "OU") can be replaced by a numerical value
- reference to zip files
- save file as a pdf/convert to pdf [3]
(b) Any four from:
- the checksum for the bytes is calculated
- this value is then transmitted with the block of data
- at the receiving end, the checksum is re-calculated from the block of data received
- the calculated value is then compared to the checksum transmitted
- if they are the same value, then the data was transmitted without any error
- if the values are different, then an error has been found
- if the values are different, then a request is sent for the data to be re-transmitted [4]


## Winter 16 p12

Q17 8 Identify whether the four statements about file compression are correct by writing TRUE or FALSE in the following table.

| Statement | TRUE or FALSE |
| :--- | :--- |
| MIDI files store the actual music notes in a compressed format |  |
| JPEG files are examples of lossless file compression |  |
| MP3 files are, on average, $90 \%$ smaller than the music files <br> stored on a CD |  |
| MP4 files are examples of lossy file compression |  |


| Statement | TRUE or FALSE |
| :--- | :---: |
| MIDI files store the actual music notes in a compressed format | FALSE |
| JPEG files are examples of lossless file compression | FALSE |
| MP3 files are, on average, 90\% smaller than the music files <br> stored on a CD | TRUE |
| MP4 files are examples of lossy file compression | TRUE |

+923002724734 /inqilabpatel inqifa6-patel
1.2 Communication and Internet technologies

Chapter at a glance:
A network is defined as a collection of computers and peripheral devices (such as printers) connected together.
Generally, a network over short distances is called a local area network (LAN) while those over great distances are wide area networks (WAN).
Network adapters: These adapters (also called network interface cards or NICs) connect computers to a network so that they can communicate.
Network hubs and switches: Hubs and switches connect two or more computers to an Ethernet network.
Routers connect computers and networks to each other (for example, a router can connect your home network to the Internet).
Modem: Hardware device that converts signals from analogue to digital and vice versa; typically used to convert signals sent over the public service telephone network.
A WEB BROWSER is software which allows a user to display a web page on their computer screen.
Web browsers interpret or translate the HTML code from websites and show the result of the translation.
SIMPLEX DATA TRANSMISSION: sending data in one direction only (i.e. from sender to receiver)
Example: data being sent from a computer to a printer, from keyboard to processor etc.
HALF-DUPLEX DATA TRANSMISSION: Sending data in both directions but only one at a time (i.e. data can be sent from ' $A$ ' to ' $B$ ' or from ' $B$ ' to ' $A$ ' along the same line, but not at the same time).
Example: a walkie-talkie, fax machine, reading or burning on cds, dvds.
FULL-DUPLEX DATA TRANSMISSION: Sending data in both directions simultaneously (i.e. data can be sent from 'A' to ' B ' and from ' B ' to ' A ' along the same line, both at the same time). Example: a phone line, video recording and playing at the same time from DVD-RAM.
SERIAL DATA TRANSMISSION is when data is sent, one bit at a time, over a single wire or channel
Bit: It is short of binary digit. It is the smallest unit of data in computer. It consists of a 0 or an 1 .
Bit rate: the rate of transmitting data
Serial Transmission: transfer of data bit by bit using single wire (bits are sent one after the other in a single stream).
Parallel Transmission: transfer of data in groups of bits using multiple wires.
ASYNCHRONOUS DATA TRANSMISSION refers to data being transmitted in an agreed bit pattern.
Data bits (1s and 0s) are grouped together and sent with CONTROL BITS means START bit and STOP bit.
Discussion forums and email are two examples of how asynchronous communication
SYNCHRONOUS DATA TRANSMISSION is a continuous stream of data (unlike
asynchronous data which is sent in discrete groups). The data is accompanied by timing signals generated by an internal clock. This ensures that the sender and receiver are synchronized with each other. Chat rooms and online conferences are good examples of synchronous communication.
+923002724734 f /inqilabpatel inqílab-patel

## Asynchronous



Synchronous


The UNIVERSAL SERIAL BUS (USB)is an asynchronous serial data transmission method. It has quickly become the standard method for transferring data between a computer and a number of devices.
INTERNET SERVICE PROVIDER (ISP); these are companies that provide the user with access to the internet.
Each device on the internet is given a unique address known as the INTERNET
PROTOCOL (IP) ADDRESS. This is a 32-bit number
HYPERTEXT MARK-UP LANGUAGE (HTML) is used when writing and developing web pages. Interference: disturbance that occur in the signals when sending data that may corrupt it.
ISP (Internet Service Provider): Company that provides individual's access to the Internet and other services such as webhosting and emails
MAC Address: Hardware identification number that uniquely identifies each device on a network; it is manufactured into every network card and cannot be altered
They are 48 bit long, but converted into 12 hexadecimal digits (in 6 pairs) making them short and easier to understand. For 00-1C-2A-FF-01. $1^{\text {st }} 3$ pairs represent manufacturer while the other represent serial number of product.
UAA (Universally Administered MAC Address) are most common. These are the MAC addresses set by manufacturer
LAA (Locally Administered MAC Address)are changed locally to bypass firewall, or to assign MAC address of specific format.

## Cascade style sheet:

IP Address: Location of a given computer/device on a network; can be a static or dynamic value. IP addresses are 32 bit long converted into 4 groups of denary numbers. IP address starts from 0.0.0.0 and ends at 255.255.255.255.

URL (Uniform Resource Locator): The standard format for referring to are source on the Internet; also called Uniform Resource Indicator (URI); made up of:
-the protocol, e.g. http
-the domain name, e.g. ruknuddin.com
-the filename e.g. computer.html
URL encoding:
Web addresses can be written using hexadecimal rather than denary. Hexadecimal codes are preceded by a \% sign. For example, the word "www.ruknuddin.com" is written as:

|  | $r$ | $u$ | $k$ | $n$ | $u$ | $d$ | $d$ | $i$ | $n$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| in hex | $\% 72$ | $\% 75$ | $\% 6 B$ | $\% 6 E$ | $\% 75$ | $\% 64$ | $\% 64$ | $\% 69$ | $\% 6 E$ |

Page |24

| W | w | w | . | $r$ | $u$ | $k$ | $n$ | $u$ | $d$ | $d$ | $i$ | $n$ | . | $c$ | 0 | $m$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\% 77$ | $\% 77$ | $\% 77$ | \%2E | $\% 72$ | $\% 75$ | $\% 6 B$ | $\% 6 E$ | $\% 75$ | $\% 64$ | $\% 64$ | $\% 69$ | $\% 6 E$ | $\% 2 E$ | $\% 63$ | $\% 6 \mathrm{~F}$ | $\% 6 \mathrm{D}$ |

Some characters are not allowed in URL. URL encoding converts characters into a format that can be transmitted over the Internet.
For example
> \%20 - is used in URL in place of <space> not allowed in a URL, \%20 is the coding for a space ( 3 2 in denary)
> ? - separates the URL from all parameters or variables
e.g. for query to search Inqilab patel in Google
https://www.google.com.pk/search? $\mathbf{? q = i n q i l a b \% 2 0 p a t e l}$
here " $q$ " is variable for query "?" separates it from URL
"https://www.google.com.pk/search"
while"\%20"is used for the space between "inqilab" and "patel"
G ingilab patel - Google Sea $\times 1$
$\leftarrow$

Page |25
<td> <th> <title> <tr>

Defines a cell in a table

## HTML Structure

Presentation describes how elements must be rendered on screen.

## HTML Presentation:

HTML presentation is format of webpage.
CSS is used to define presentation for web pages, including the design and variations in display for different devices and screen sizes.


When a browser reads a style sheet, it will format the HTML document according to the information in the style sheet.

Web Server: The computers which host web sites.
Checksum: Technique used in data transmission to validate data by sending a block of data calculated from the contents of preceding blocks. The following algorithm is used to calculate check sum:

1. Calculate file size
2. If file size<256 then
3. Checksum=file size
4. Else
5. Checksum=file size MOD 256
6. Endif

Parity Check: Technique used in data transmission to validate data by sending an additional bit determined by the contents of the preceding bits to make the total number of 1 s odd or even.
Parity Block: A parity check carried out on a sequence of bytes. The parity block is an additional byte where the bits are computed from the preceding data bytes. The bytes are arranged in a grid and each parity byte bit is calculated from the bits in the column above.

Check digit: Validation technique that involves calculating an additional digit from the ones that proceed it. Following two Methods are used to calculate check digit

## Modulo-11 Method:

(i) The position of each digit is first considered:

|  |  |  |  |  | 5 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | $1 \longleftarrow \sim$ igit Position |
| 0 | 2 | 2 | 1 | 4 | 3 | 2 | 5 | 6 | ? |

(ii) Each digit in the number is then multiplied by it's digit position and the totals are added together:
i.e. $(0 \times 10)+(2 \times 9)+(2 \times 8)+(1 \times 7)+(4 \times 6)+(3 \times 5)+(2 \times 4)+(5 \times 3)+(6 \times 2)$
$=0+18+16+7+24+15+8+15+12$
$=115$ total
(iii) The total is then divided by 11 (modulo 11) and the remainder, if any, is subtracted from 11. The answer then gives the check digit.
i.e. $115 / 11=10$ remainder 5
i.e. $11-5=6$ (check digit)
hence, the final number is: 0-221-43256-6

## Modulo-10 Method (ISBN-13):

Modulo-10 method is used in check digit calculation in ISBN 13, where the 13th digit of the ISBN code is calculated using the following algorithm.
1 Add all the odd numbered digits together, excluding the check digit.
2 Add all the even numbered digits together and multiply the result by 3.
3 Add the results from 1 and 2 together and divide by 10.
4 Take the remainder, if it is zero use this value, otherwise subtract the remainder from 10 to find the check digit.


Using the ISBN above 978034098382 without its check digit:
$19+8+3+0+8+8=36$
$23(7+0+4+9+3+2)=75$
$3(36+75) / 10=11$ remainder 1
410-1 = 9 the check digit.
AUTOMATIC REPEAT REQUEST (ARQ) is another method used to check whether data has been correctly transmitted.
It uses an ACKNOWLEDGEMENT (a message sent by the receiver indicating that data has been received correctly) and TIMEOUT (this is the time allowed to elapse before an acknowledgement is received).
If an acknowledgement isn't sent back to the sender before timeout occurs, then the message is automatically resent.
With ECHO CHECK, when data is sent to another device, this data is sent back again to the sender.
The sender compares the two sets of data to check if any errors occurred during the transmission process.
+923002724734
@inquíab
/inqilabpatel
inqifa6-patel

Page $\mid 27$

## Sample Question:

a) A web page offers a link for users to request another web page. The requested web page contains HTML code.
Put each statement in the correct sequence by writing the numbers 1 to 5 in the right-hand column.

| Statement | Sequence No |
| :--- | :--- |
| The requested web page is displayed on the client computer |  |
| The user clicks on the hyperlink and the web page is requested from the web <br> server |  |
| The requested web page content is transmitted to the client computer |  |
| The client computer processes the html code using the web browser software |  |
| The web server locates the requested web page |  |

b) HTML code for a website is given below:

```
<html>
<head>
<title> O Level Computer Science with Inqilab Patel</title>
<style>
body {
    background-color: #0000ff;
}
h1 {
    color: #980000;
    margin-left: 40px;
}
</style>
</head>
<body>
<h1>In the name of Allah</h1>
<p>The Cambridge O Level Computer Science syllabus enables learners
to develop an interest in computing and gain confidence in computational
thinking and programming. Cambridge O Level Computer Science
is an ideal foundation for further study at Cambridge International
A Level, and the skills learnt can also be
used in other areas of study and in everyday life.</p>
</body>
</html>
```

(a) Which lines in the webpage script are related to presentation (style) code?
(b) By studying the web page script and its use, what is the use in HTML of:
(i) the <h1> tag?
(ii) the <p>tag?

## Summer 15 P11)

Q1 (a) State what is meant by the terms:
Parallel data transmission:


Page $\mid 28$
Serial data transmission:

$$
-2
$$

Serial data transmission: $\qquad$
(b) Give one benefit of each type of data transmission. Parallel data transmission Benefit:

Serial data transmission Benefit:
(c) Give one application of each type of data transmission. Each application must be different. Parallel data transmission Application:

Serial data transmission Application:
$\qquad$
2 (a) State what is meant by the term USB.
[1]
(b) Describe two benefits of using USB connections between a computer and a device.

1:
2 : $\qquad$
Marking Scheme
1 (a) parallel
any one from:

- 8 bits/1 byte/multiple bits sent at a time
- using many/multiple/8 wires/lines (1 mark)


## serial

any one from:

- one bit sent at a time
- over a single wire (1 mark) [2]
(b) parallel
- faster rate of data transmission (1 mark)


## serial

## any one from:

- more accurate/fewer errors over a longer distance
- less expensive wiring
- less chance of data being skewed/out of synchronisation/order (1 mark) [2]
(c) parallel
any one from:
- sending data from a computer to a printer
- internal data transfer (buses) (1 mark)
serial
- connect computer to a modem (1 mark) [2]

2 (a) - universal serial bus

- description of USB [1]

Page |29
(b) Any two from:

- devices are automatically detected and configured when initially attached
- impossible to connect device incorrectly/connector only fits one way
- has become the industry standard
- supports multiple data transmission speeds
- lots of support base for USB software developers
- supported by many operating systems
- backward compatible
- faster transmission compared to wireless [2]


## Summer 15 P12)

Q2) Parity checks are often used to check for errors that may occur during data transmission.
(a) A system uses even parity.

Tick $(\checkmark)$ to show whether the following three bytes have been transmitted correctly or incorrectly.

| Received byte | Byte transmitted correctly | Byte transmitted <br> incorrectly |
| :--- | :--- | :--- |
| 11001000 |  |  |
| 01111100 |  |  |
| 01101001 |  |  |

(b) A parity byte is used to identify which bit has been transmitted incorrectly in a block of data. The word "F L O W C H A R T" was transmitted using nine bytes of data (one byte per character). A tenth byte, the parity byte, was also transmitted.
The following block of data shows all ten bytes received after transmission. The system uses even parity and column 1 is the parity bit.

|  | letter | column <br> $\mathbf{1}$ | column <br> $\mathbf{2}$ | column <br> $\mathbf{3}$ | column <br> $\mathbf{4}$ | column <br> $\mathbf{5}$ | column <br> $\mathbf{6}$ | column <br> $\mathbf{7}$ | column <br> $\mathbf{8}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| byte 1 | F | 1 | 0 | $\mathbf{1}$ | 0 | 0 | 1 | 1 | 0 |
| byte 2 | L | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |
| byte 3 | O | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
| byte 4 | W | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
| byte 5 | C | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
| byte 6 | H | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| byte 7 | A | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| byte 8 | R | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
| byte 9 | T | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
| parity <br> byte |  | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |

(i) One of the bits has been transmitted incorrectly. Write the byte number and column number of this bit:
Byte number .Column number
(ii) Explain how you arrived at your answer for part (b)(i).
(c) Give the denary (base 10) value of the byte: 10111110
$\qquad$
+923002724734
/inqilabpatel
@inqífab
inqifa6-pate\

Page |30
(d) A parity check may not identify that a bit has been transmitted incorrectly.

Describe one situation in which this could occur.
$\qquad$
$\qquad$
Marking Scheme
Q2a)

| Received byte | Byte transmitted <br> correctly | Byte transmitted <br> incorrectly |
| :---: | :---: | :---: |
| 11001000 |  | $\checkmark$ |
| 01111100 |  | $\checkmark$ |
| 01101001 | $\checkmark$ |  |

(b) (i) byte number: 7
column number: 6
(ii) Any two from:

- letter "A"(byte 7) transmitted as odd parity (three 1s)
- column 6 has odd parity (seven 1s)
- intersection of byte 7 and column 6 indicates incorrect bit value
(c) 190
(d) Any one from:
- 2 bits interchanged (e.g. $1 \rightarrow 0$ and $0 \rightarrow 1$ ) that won't change parity value
- even number of bits/digits are transposed
- If there are multiple errors in the same byte/column, that still produce the same parity bit, the error will not be detected [1]


## Winter 15 P12)

Q3) (a) Check digits are used to ensure the accuracy of input data.
A 7-digit code number has an extra digit on the right, called the check digit.

| Digit position | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Digit | - | - | - | - | - | - | - | - |

The check digit is calculated as follows:

- each digit in the number is multiplied by its digit position
- the seven results are then added together
- this total is divided by 11
- the remainder gives the check digit (if the remainder $=10$, the check digit is $X$ )
(i) Calculate the check digit for the following code number. Show all your working.

4241508
$\qquad$
$\qquad$
Check digit
(ii) An operator has just keyed in the following code number:

## 3240045 X

Has the operator correctly keyed in the code number?


Page |31
Give a reason for your answer.
$\qquad$
$\qquad$
$\qquad$
(b) When data are transmitted from one device to another, a parity check is often carried out on each byte of data. The parity bit is often the leftmost bit in the byte.
(i) If a system uses even parity, give the parity bit for each of the following bytes: parity bit

| 1 | 1 | 0 | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

parity bit

| 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(ii) A parity check can often detect corruption of a byte.

Describe a situation in which it cannot detect corruption of a byte.
$\qquad$
$\qquad$

Q4) a) Explain what is meant by HTML.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(b) HTML uses both structure and presentation.

Describe what is meant by the two terms.
Structure:

Presentation:
(c) Explain the function of a web browser.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Marking Scheme

Q3 (a) (i) 1 mark for correct check digit and 1 mark for showing the calculation
$(4 \times 1)+(2 \times 2)+(4 \times 3)+(1 \times 4)+(5 \times 5)+(0 \times 6)+(8 \times 7)$
$=4+4+12+4+25+0+56=105$
105/11 = 9 remainder 6

## check digit is: 6 [2]

+923002724734
@inquíab
/inqilabpatel
inqifab-patel

Page | 32
(ii) 1 mark

- No/incorrect check digit

2 marks

- Total is 78
- 78/11 ...
- ... gives 7 remainder 1
- check digit should be 1 [3]
(b) (i) 1 mark for each correct parity bit
parity bit

| 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

parity bit

| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(ii) Any one from:

- an even number of digits are changed
- a transposition error(s) has occurred [1]

Q4) (a) Any three from:

- hypertext mark-up language
- used to create/develop/author webpages
- translated by a browser to display webpages
- uses (opening and closing) tags to display/format content [3]


## (b) Structure:

- instructs how the layout of the content is displayed

Presentation:

- instructs how the content will be formatted e.g. colour/style/CSS [2]
(c) Any three from:
- displays web page
- interprets/translates the HTML document
- interprets/translates embedded scripting, for example JavaScript
- provides functions, such as bookmarks and history
- identifies protocols, such as https, SSL [3]

Q5) A company selling CDs uses a unique 6-digit identification number for each CD title. The rightmost digit (position 1 ) is a check digit.
For example,
$\begin{array}{lllllll}6 & 5 & 4 & 3 & 2 & 1 & \text { digit position }\end{array}$

| 3 | 0 | 6 | 1 | 4 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- |

check digit
The validity of the number and check digit is calculated as follows:

- multiply each digit by its digit position
- add up the results of the multiplications
- divide the answer by 11
- if the remainder is 0 , the identification number and check digit are valid.

+923002724734 f /inqilabpatel inqifa6-patel

Wel ruknudadin.com

Page ${ }^{3} 3$
(a) Show whether the following identification numbers are valid or not. You must show how you arriv ed at your answer.
Identification number 1:421923
working:
$\qquad$

Valid or not valid?
Identification number 2: 820156 working:
$\qquad$
$\qquad$
$\qquad$
Valid or not valid?
(b) Find the check digit for this identification number.

50241 $\qquad$ working: $\qquad$ -.....
$\qquad$

## Check digit

 [2](c) Describe, with examples, two different types of data entry errors that a check digit would detect. 1.
$\qquad$
2
(b) When data are transmitted from one device to another, a parity check is often carried out on each byte of data. The parity bit is often the leftmost bit in the byte.
(i) If a system uses even parity, give the parity bit for each of the following bytes:

| parity bit |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ |


(ii) A parity check can often detect corruption of a byte.

Describe a situation in which it cannot detect corruption of a byte.
$\qquad$
$\qquad$

## Winter 15 p11)

Q6) Six computer terms and six descriptions are shown below.
Draw a line to link each term to its appropriate description.[5]


Q6)Parity checks are used to check for errors during data transmission. A system uses odd parity.
(a) Complete the following two bytes of data so that they both have odd parity:

|  | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(b) Name and describe another method which can be used to check whether data has been correctly transmitted.
Name of method:
Description:
$\qquad$
$\qquad$

Page |35
2210_0478_16w_qp_11_13
Q7) Five computer terms and seven descriptions are shown below.
Draw a line to connect each computer term to its correct description.

## Computer term

Serial, simplex data transmission

Parallel, half-duplex data transmission

## Parity check

Automatic repeat
request (ARQ)

Checksum

## Description

Several bits of data sent down several wires, in both directions, but not at the same time

Several bits of data sent down several wires, in both directions, at the same time

An even or odd number of bits set to 1 in a byte, used to check if the byte has been transmitted correctly

One bit sent at a time, over a single wire in one direction only

An additional digit placed at the end of a number to check if the number has been entered correctly

A value transmitted at the end of a block of data; it is calculated using the other elements in the data stream and is used to check for transmission errors

An error detection method that uses response and time out when transmitting data; if a response is not sent back to the sender in an agreed amount of time, then the data is re-sent

Q8 c) A microprocessor regularly samples the output, $X$. Each sample value is stored in an 8-bit register as shown below. One bit of this register is reserved as a parity bit.
Five consecutive output values of 1 indicate a fault condition. Identify which of the following registers shows a fault condition.

Parity bit

| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Register Y |  |  |  |  |  |  |  |
| 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | Register Z

Register $\qquad$

Page |36
(d) When eight bytes of data have been collected, they are transmitted to a computer 100km away. Parity checks are carried out to identify if the data has been transmitted correctly. The system uses even parity and column 1 is the parity bit.
The eight bytes of data are sent together with a ninth parity byte:

|  | parit <br> $\mathbf{y}$ <br> bit | column <br> $\mathbf{2}$ | column <br> $\mathbf{3}$ | column <br> $\mathbf{4}$ | column <br> $\mathbf{5}$ | column <br> $\mathbf{6}$ | column <br> $\mathbf{7}$ | column <br> $\mathbf{8}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| byte 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| byte 2 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
| byte 3 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| byte 4 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
| byte 5 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| byte 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| byte 7 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
| byte 8 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| parity <br> byte | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |

(i) Identify which of the eight bytes contains an error.
byte
(ii) Identify which column contains an error.
column
(iii) The incorrect bit is indicated where the byte number and column cross.

Give the corrected byte.

(iv) Calculate the denary value of the corrected byte.
$\qquad$
(v) Considering the fault condition given in part (c), explain why it is very important that the incorrect bit is located and corrected.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Winter 16 P12

Q9 (a) Explain what is meant by:
(i) Serial data transmission
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


Page | 37
(b) A computer in a factory is connected to a printer. The printer is located in an office 1 km away from the factory.
Identify which data transmission method would be most suitable for this connection.

## Give two reasons for your choice.

1 $\qquad$
$\qquad$

2 $\qquad$
$\qquad$
Q10) Nine bytes of data are transmitted from one computer to another. Even parity is used. An additional parity byte is also sent.
The ten bytes arrive at the destination computer as follows:

|  | parity bit | bit 2 | bit 3 | bit 4 | bit 5 | bit 6 | bit 7 | bit 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| byte 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |
| byte 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| byte 3 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| byte 4 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| byte 5 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
| byte 6 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
| byte 7 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
| byte 8 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
| byte 9 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
| parity <br> byte | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |

One of the bits was corrupted during the data transmission.
(a) Circle the corrupt bit in the corrupt byte in the table above.
(b) Explain how the corrupted bit was found.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Q11) A computer uses an 8-bit register.
The 8-bit register contains binary integers.
(a) Write the denary (base 10) value represented by:

| 128 | 64 | 32 | 16 | 8 | 4 |  | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  |  |  |
| 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |

+923002724734
@inqífab
/inqilabpatel
inqifab-patel

Page | 38
(b) All the bits in the register are shifted one place to the right as shown below.


Write the denary number that is represented after this shift.
(c) State the effect the shift to the right had on the original denary number from part (a).
$\qquad$
(d) The original number in part (a) is shifted three places to the right.
(i) Show the new binary number:

|  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(ii) Write the equivalent denary number.
(e) Describe the problems that could be caused if the original binary number in part (a) is shifted five places to the right.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Marking Scheme

 Q9)(a) (i) Any two from:
serial

- one bit sent at a time // bits sent sequentially
- over a single wire
- synchronous or asynchronous
[2]
(ii) Any two from:
parallel
- several bits / a byte sent at a time
- using many / multiple wires
- synchronous
(b) - serial

Any two from:

- serial data transmission more reliable over long distances
- less likely for the data to be skewed/out of synchronisation
- less interference as only a single wire
- it is a cheaper connection as only single wire needed // cheaper to set up
- a fast connection is not required as a printer is limited by its printing speed [3]

+923002724734
@inqílab

/inqilabpatel
inqilab-patel

Page |39
Q10) (a) Intersection of Row 7 and column 4 circled [1]
(b) - Row (byte number) 7 has an odd number of 1s (five 1s)

- Column (bit number) 4 has an odd number of 1s (five 1s)

Q11) (a) 112 [1]
(b) 56 [1]
(c) divided by 2 // value 112 was halved // multiplied by 0.5 [1]
(d) (i)

| 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(ii) 14 [1]
(e) Any two from:

- run out of places to the right of register / at the end of register
- right-most 1 would be lost
- number would become 3 instead of 3.5
- loss of precision


## 0478-2210 Summer 2016P12

Q12 (a) Three descriptions of data transmission are given below.
Tick $(\checkmark)$ the appropriate box in each table to show the:

- type of transmission
- method of transmission


## Description 1:

Data is transmitted several bits a ta time down several wires in both directions simultaneously.

| Type | Tick <br> $(\checkmark)$ |
| :--- | :--- |
| simplex |  |
| half-duplex |  |
| full-duplex |  |

## Description 2:

| Method | Tick <br> $(\checkmark)$ |
| :--- | :--- |
| serial |  |
| parallel |  |

only, one bit at a time, down a single wire.

| Type | Tick <br> $(\checkmark)$ |
| :--- | :--- |
| simplex |  |
| half-duplex |  |
| full-duplex |  |


| Method | Tick <br> $(\checkmark)$ |
| :--- | :--- |
| serial |  |
| parallel |  |

## Description 3:

Data is transmitted one bit at a time down a single wire; the data is transmitted in both directions but not at the same time.

| Type | Tick <br> $(\checkmark)$ |
| :--- | :--- |
| simplex |  |
| half-duplex |  |
| full-duplex |  |


| Method | Tick <br> $(\checkmark)$ |
| :--- | :--- |
| serial |  |
| parallel |  |

(b) Give two reasons why serial transmission, rather than parallel transmission, is used to connect devices to a computer.
1 $\qquad$
+923002724734
inqifab-patel

Page |40
2

Q10) 11 Describe the use of structure and presentation in a HTML document.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Winter 16 P12 <br> Q11 (a) Describe what is meant by HTML.

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(b) The following URL is typed in:

## http://www.cie.org.uk/ComputerSciencePapers

This URL is composed of three parts.
State the part of this URL that is the:
File name
Protocol
Web server name

## Marking Scheme

Q11 (a) Any three from:

- hyper text mark-up language
- uses both structure and presentation
- web-authoring language/software // used to create websites/webpages
- uses tags to define e.g. colour / font / graphics / layout


## (b)

File name: ComputerSciencePapers
Protocol: http(://)
Web server name: www.cie.org.uk
+923002724734 /inqilabpatel
inqifab-patel

## Page |41

### 1.3.1 Logic gates

Logic gates are basic components used to construct a logic circuit.
They are used by implementing Boolean algebra. Logic gates have two or more input and one output except NOT Gate which has one input and one output.
Truth tables
A truth table is used to show the output of a logic gate or circuit for all possible combinations of input values; we usually use the binary values, 1 and 0 , as shorthand for True and False.
The truth table for a two-input gate needs four rows.

| INPUT |  | OR | AND | NAND | NOR | XOR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | B |  | $\begin{aligned} & A-\square-x \\ & B-\square \end{aligned}$ |  |  | ${ }^{A}+D-x$ |
|  |  | $\mathrm{X}=\mathrm{a}+\mathrm{b}$ | X=a.b | $\mathrm{X}=\overline{\mathrm{a} \cdot \mathrm{b}}$ | $X=\overline{a+b}$ | $\mathrm{X}=(\mathrm{a} \cdot \overline{\mathrm{b}})+(\overline{\mathrm{a}} \cdot \mathrm{b})$ |
| 0 | 0 | 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 |

## Logic 'building blocks'

One very common 'building block' is the NAND gate. It is possible to build up any logic gate, and therefore any logic circuit, by simply linking together a number of
NAND gates. For example, the AND, OR and NOT gates can be built from these gates as shown below:

## NOT Gate:



## AND Gate:



## OR Gate:



## Simplification Logic Circuit:

Simplification means reducing the number of components in a logic circuit. As a result of simplification the cost of production can be less. This can also improve reliability and make it easier to trace faults if they occur.

Q20) Show by drawing a truth table which single logic gate or what else has the same function as the logic circuit drawn in
a)

Page |42

b)

c)


What could replace the whole logic circuit?
Half Adder"
The half adder adds two single binary digits $A$ and $B$. It has outputs, sum $(S)$ and carry $(C)$. The carry signal represents an overflow into the next digit of a multi-digit addition. The simplest half-adder design, pictured on the right, incorporates an XOR gate for $S$ and an AND gate for $C$. With addition of an OR gate to combine their carry outputs, two half


Page |43
adders can be combined to make a full adder

| Inputs |  | Outputs |  |
| :---: | :---: | :---: | :---: |
| $\boldsymbol{A}$ | $\boldsymbol{B}$ | $\boldsymbol{C}$ | $\boldsymbol{S}$ |
| 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |

A power station has a safety system controlled by a logic circuit. Three inputs to the logic circuit determine whether the output, $S$, is 1 . When $S=1$ the power station shuts down.
The following table describes the conditions being monitored.

| Parameter description | Parameter | Binary value | Description of condition |
| :--- | :--- | :--- | :--- |
| gas temperature | G | 0 | gas temperature $<=160^{\circ} \mathrm{C}$ |
|  |  | 1 | gas temperature $>160^{\circ} \mathrm{C}$ |
| reactor pressure | R | 0 | reactor pressure $<=10 \mathrm{bar}$ |
|  |  | 1 | reactor pressure $>10 \mathrm{bar}$ |
| water temperature | W | 0 | water temperature $<=120^{\circ} \mathrm{C}$ |
|  |  | 1 | water temperature $>120^{\circ} \mathrm{C}$ |

Output, S , will generate a value of 1 , if:
either
gas temperature $>160^{\circ} \mathrm{C}$ AND water temperature $<=120^{\circ} \mathrm{C}$
or
gas temperature $<=160^{\circ} \mathrm{C}$ AND reactor pressure $>10 \mathrm{bar}$
or
water temperature $>120^{\circ} \mathrm{C}$ AND reactor pressure $>10 \mathrm{bar}$

## Summer 15 P1)

Q1a) Complete the truth table for the following logic circuit:

/inqilabpatel
inqifa6-patel

Page |44

| A | B | C | Workspace | X |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 |  |  |
| 1 | 1 | 0 |  |  |
| 1 | 0 | 1 |  |  |
| 1 | 0 | 0 |  |  |
| 0 | 1 | 1 |  |  |
| 0 | 1 | 0 |  |  |
| 0 | 0 | 1 |  |  |
| 0 | 0 | 0 |  |  |

(b) Draw a logic circuit which corresponds to the following logic statement:
$X=1$ if ((A is NOT 1 OR $B$ is 1 ) AND $C$ is 1 ) OR ( $B$ is NOT 1 AND $C$ is 1 )

[3]
(c) Write a logic statement which corresponds to the following logic circuit:

$\qquad$

## Page 45

## Summer 15 P12)

Q2)A gas fire has a safety circuit made up of logic gates. It generates an alarm ( $X=1$ ) in response to certain conditions.

| Input | Description | Binary value | Conditions |
| :---: | :--- | :---: | :--- |
| $\mathbf{G}$ | gas pressure | 1 | gas pressure is correct |
|  |  | 0 | gas pressure is too high |
| $\mathbf{*} \mathbf{C}$ | carbon monoxide level | 1 | carbon monoxide level is correct |
|  |  | 0 | carbon monoxide level is too high |
| $\mathbf{L}$ | gas leak detection | 1 | no gas leak is detected |
|  |  | 0 | gas leak is detected |

The output $X=1$ is generated under the following conditions:
gas pressure is correct AND carbon monoxide level is too high

## OR

carbon monoxide level is correct AND gas leak is detected
(a) Draw a logic circuit for this safety system.
[5]

(b) Complete the truth table for the safety system.

| $G$ | $C$ | $L$ | Workspace | $X$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 |  |  |
| 1 | 1 | 0 |  |  |
| 1 | 0 | 1 |  |  |
| 1 | 0 | 0 |  |  |
| 0 | 1 | 1 |  |  |
| 0 | 1 | 0 |  |  |
| 0 | 0 | 1 |  |  |
| 0 | 0 | 0 |  |  |

Page $\mid 46$
(c) Complete the truth table for the XOR gate:


| $A$ | $B$ | $C$ |
| :--- | :--- | :--- |
| 0 | 0 |  |
| 0 | 1 |  |
| 1 | 0 |  |
| 1 | 1 |  |

## Marking Scheme

a)

b)

| $G$ | $C$ | $L$ | Workspace | $X$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 |  | 0 |
| 1 | 1 | 0 |  | 1 |
| 1 | 0 | 1 |  | 1 |
| 1 | 0 | 0 |  | 1 |
| 0 | 1 | 1 |  | 0 |
| 0 | 1 | 0 |  | 1 |
| 0 | 0 | 1 |  | 0 |
| 0 | 0 | 0 |  | 0 |

c)

Page $\mid 47$

| $A$ | $B$ | $C$ |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

Q3) The following three logic statements define the light sequence:

- $\mathrm{R}=1 \mathrm{IF}$ ( A is NOT 1 )
- $G=1 \mathrm{IF}$ ( B is 1 AND C is 1 )
- $\mathrm{Y}=1 \mathrm{IF}$ ( A is 1 AND NOT ( B is 1 AND C is 1 ))

Draw the logic circuit that directly combines ALL three of these logic statements and produces three outputs R, G and Y.


|  |  |  | outputs |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ |
| 0 | 0 | 0 |  |  |  |
| 0 | 0 | 1 |  |  |  |
| 0 | 1 | 0 |  |  |  |
| 0 | 1 | 1 |  |  |  |
| 1 | 0 | 0 |  |  |  |
| 1 | 0 | 1 |  |  |  |
| 1 | 1 | 0 |  |  |  |
| 1 | 1 | 1 |  |  |  |

Page $\mid 48$
Q4) Four sensors (numbered 1 to 4 ) produce binary output which controls the lights at a rock concert. The diagram shows how the sensors are connected:

(a) Complete the truth table for this logic circuit.
[4]

| inputs |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| sensor 1 | sensor 2 | sensor 3 | sensor 4 | outputs | B | C |
| 0 | 0 | 0 | 0 |  |  |  |
| 0 | 0 | 0 | 1 |  |  |  |
| 0 | 0 | 1 | 0 |  |  |  |
| 0 | 0 | 1 | 1 |  |  |  |
| 0 | 1 | 0 | 0 |  |  |  |
| 0 | 1 | 0 | 1 |  |  |  |
| 0 | 1 | 1 | 0 |  |  |  |
| 0 | 1 | 1 | 1 |  |  |  |
| 1 | 0 | 0 | 0 |  |  |  |
| 1 | 0 | 0 | 1 |  |  |  |
| 1 | 0 | 1 | 0 |  |  |  |
| 1 | 0 | 1 | 1 |  |  |  |
| 1 | 1 | 0 | 0 |  |  |  |
| 1 | 1 | 0 | 1 |  |  |  |
| 1 | 1 | 1 | 0 |  |  |  |
| 1 | 1 | 1 | 1 |  |  |  |

## Computer:Science wih Inqilab Patal

### 1.3.2Computer architecture and the fetch-execute cycle

## Von Neumann Architecture

The idea about how computers should be built was proposed by John von Neumann in 1945. This idea is called the von Neumann Architecture or Model. This is still the basis for computers today. Using these four components, a von Neumann computer will execute a series of instructions, called a program, which are stored in the computer's memory. This is called the "stored program concept". The components of von Neumann Architecture is:

1. Input/output (I/O)
2. Memory
3. A Control Unit

An Arithmetic Logic Unit (ALU)
Register:


Registers are Immediate Access Store (IAS) located on the CPU, and used temporarily for storing data. Because the registers are close to the ALU, they are made out of fast memory, efficiently speeding up calculations.
There are 14 registers. Some examples are
a) Program Counter (PC) - an incrementing counter that keeps track of the next memory address of the instruction that is to be executed once the execution of the current instruction is completed.
b) Memory Address Register (MAR) - the address in main memory that is currently being read or written
c) Memory Buffer/Data Register (MBR/MBR) - a two-way register that holds data fetched from memory (and ready for the CPU to process) or data waiting to be stored in memory
d) Current Instruction register (CIR) - a temporary holding ground for the instruction that has just been fetched from memory
e) Accumulator Register (ACC)is used for storing data for ALU to process and the results those are produced by the ALU.

Buses: "The set of wires used to travel signals to and from CPU and different components of computer is called Bus."

Bus is a group of parallel wires that is used as a communication path. As a wire transmits a single bit so 8 -bits bus can transfer 8 bits ( 1 byte) at a time and 16 -bits bus can transfer 16 bits ( 2 bytes) and so on. There are three types of buses according to three types of signals, these are:
a) Data Bus: "The buses which are used to transmit data between CPU, memory and peripherals are called Data Bus."
b) Address Bus: "The buses which are connecting the CPU with main memory and used to identify particular locations (address) in main memory where data is stored are called Address Buses."
+923002724734 /inqiaabpatel

## Page $\mid 50$

c) Control Bus: The wires which are used to transmit the control signals (instructions) generated by Control Unit to the relevant component of the computer.

e) The diagram above shows a simplified form of processor architecture.

Name the three buses labelled A, B and C.
A
B $\qquad$
C [3]

## Summer 15 P11)

(a) One of the key features of von Neumann computer architecture is the use of buses.

Three buses and three descriptions are shown below.
Draw a line to connect each bus to its correct description.


This bus carries signals used to coordinate the computer's activities

This bi-directional bus is used to exchange data between processor, memory and input/ output devices

This uni-directional bus carries signals relating to memory addresses between processor and memory

## Page |51

(b) The seven stages in a von Neumann fetch-execute cycle are shown in the table below. Put each stage in the correct sequence by writing the numbers 1 to 7 in the right hand column. The first one has been done for you.

| Stage | Sequence <br> number |
| :--- | :---: |
| the instruction is then copied from the memory location contained in the <br> MAR (memory address register) and is placed in the MDR (memory <br> data register) |  |
| the instruction is finally decoded and is then executed |  |
| the PC (program counter) contains the address of the next instruction to <br> be fetched | 1 |
| the entire instruction is then copied from the MDR (memory data <br> register) and placed in the CIR (current instruction register) |  |
| the address contained in the PC (program counter) is copied to the <br> MAR (memory address register) via the address bus |  |
| the address part of the instruction, if any, is placed in the MAR (memory <br> address register) |  |
| the value in the PC (program counter) is then incremented so that it <br> points to the next instruction to be fetched |  |

Marking Scheme


This bus carries signals used to coordinate the computer's activities

This bi-directional bus is used to exchange data between processor, memory and input/ output devices

This uni-directional bus carries signals relating to memory addresses between processor and memory

| Stage | Sequence <br> number |
| :--- | :---: |
| the instruction is then copied from the memory location contained in the <br> MAR (memory address register) and is placed in the MDR (memory <br> data register) | 3 |
| the instruction is finally decoded and is then executed | 7 |
| the PC (program counter) contains the address of the next instruction to <br> be fetched | 1 |
| the entire instruction is then copied from the MDR (memory data <br> register) and placed in the CIR (current instruction register) | 4 |
| the address contained in the PC (program counter) is copied to the <br> MAR (memory address register) via the address bus | 2 |
| the address part of the instruction, if any, is placed in the MAR (memory | 6 |

+923002724734
/inqilabpatel
in inqilab patel
@inqíab
inqifa6-patel

Page $\mid 52$

| address register) |  |
| :--- | :---: |
| the value in the PC (program counter) is then incremented so that it <br> points to the next instruction to be fetched | $5^{*}$ |

The incrementation of the program counter can appear at any stage after 2. All other stages must be in the correct given order.

## Winter 15 p13

Q2 ) A section of computer memory is shown below:

| Address | Content |  |  |
| :---: | :---: | :---: | :---: |
| 10000000 | 01101110 |  |  |
| 10000001 | 01010001 |  |  |
| 10000010 | 10001101 |  |  |
| 10000011 | 10001100 |  |  |
|  |  |  |  |
| 10001100 |  |  |  |
| 10001101 |  |  |  |
| 10001110 |  |  |  |
| 10001111 |  |  |  |

(a) (i) The contents of memory location 10000001 are to be read.

Show the contents of the Memory Address Register (MAR) and the Memory Data Register (MDR) during this read operation:

MAR


MDR

[2]
(ii) The value 01111001 is to be written into memory location 10001110.

Show the contents of the MAR and MDR during this write operation:
MAR


MDR $\square$ [2]

Page |53
(iii) Show any changes to the computer memory following the read and write operations in part (a)(i) and part (a)(ii).
[1]

| Address | Content |
| :---: | :---: |
| 10000000 | 01101110 |
| 10000001 | 01010001 |
| 10000010 | 10001101 |
| 10000011 | 10001100 |
|  | $\zeta$ |
| 10001100 |  |
| 10001101 |  |
| 10001110 |  |
| 10001111 |  |

(b) Name three other registers used in computers.

1
2 3. [3]
(c) The control unit is part of a computer system.

What is the function of the control unit?
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Marking Scheme

(a) (i)

| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |

## [2]

(ii)

| 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[2]
(iii)

| Address | Contents |
| :--- | :--- |
| 10000000 | 01101110 |
| 10000001 | 01010001 |
| 10000010 | 10001101 |
| 10000011 | 10001100 |
|  |  |
| 10001100 |  |

Page 54

| 10001101 |  |
| :--- | :--- |
| 10001110 | 01111001 |
| 10001111 |  |

[1]
(b) - CIR (Current Instruction Register)

- PC (Program Counter)
- Acc (Accumulator) [3]
(c) - Controls operation of memory, processor and input/output
- Instructions are interpreted
- Sends signals to other components telling them "what to do" [3]

Winter 15 p 11$)$
Q3) (b) Two features of Von Neumann architecture are the use of registers and the use of buses.
Give the names of two registers and two buses.
Registers
1: $\qquad$
2 : $\qquad$

## Buses

1 $\qquad$

2 : $\qquad$

## Detailed description of Fetch-Decode-Execute Cycle

To better understand what is going on at each stage we'll now look at a detailed description:

| PC | 201 | 201 | LOAD 206 |
| :---: | :---: | :---: | :---: |
|  |  | 202 | ADD \#205 |
| MAR | 201 | 203 | STORE 205 |
| MBR |  | 204 | HALT |
| CIR |  | 205 | 203 |
|  |  | 206 | 1 |
|  |  | ACC |  |

The contents of the Program Counter, the address of the next instruction to be executed, is placed into the Memory Address Register
+923002724734
@inqíab
/inqilabpatel
inqilab-patel
E

Page $\mid 55$

```
MBR <- [Memory] mar addess; PC <- [PC]+1
```



```
ACC
```

The address is sent from the MAR along the address bus to the Main Memory. The instruction at that address is found and returned along the data bus to the Memory Buffer Register. At the same time the contents of the Program Counter is increased by 1, to reference the next instruction to be executed.


The MBR loads the Current Instruction Register with the instruction to be decoded by decoder of control unit or the MBR loads Accumulator with the data to be executed.


## Activity

Complete the following diagrams showing each step of the fetch decode execute cycle:

Page $\mid 56$

| $\mathrm{MAR}<-[\mathrm{PC}]$ |  |  |  | MBR <- [Memory $]_{\text {Mar address; }}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PC | 162 | 161 | LOAD 167 | PC | 162 | 161 | LOAD 167 |
|  |  | 162 | LOAD \#166 |  |  | 162 | LOAD \#166 |
| MAR |  | 163 | ADD 166 | MAR |  | 163 | ADD 166 |
| MBR |  | 164 | STORE 161 | MBR |  | 164 | STORE 161 |
| CIR |  | 165 | HALT |  |  | 165 | HALT |
|  |  | 166 | 53 | CIR |  | 166 | 53 |
|  |  | 166 | 35 |  |  | 166 | 35 |
|  |  | ACC |  |  |  | ACC |  |



At a particular point in a program, the program counter (PC) contains the value 200.State the expected value contained in the PC after the instruction held at location 200 has been fetched.
Explain your answer.
$\qquad$

Page $\mid 57$

## Winter 16 P12

Four computer terms and eight descriptions are shown below.
Draw lines to connect each computer term to the correct description(s).

## Computer term

Arithmetic and logic unit (ALU)

## Description

Data can be read but not altered

Carries out operations such as addition and multiplication

Stores bootstrap loader and BIOS
Fetches each instruction in turn

Carries out operations such as AND, OR, NOT

Stores part of the operating system currently in use

Stores data currently in use

Manages execution of each instruction
Marking Scheme


### 1.3.3 Input devices

### 1.3.4 Output devices

### 1.3.5 Memory, storage devices and media

Input Devices: Input devices allow us to enter raw data into a computer.

- Scanners
- Barcode readers/scanners
- Quick response (QR) code readers
- Digital cameras
- Keyboards
- Pointing devices (such as a mouse)
- Microphones
- Touchscreens
- Sensors
- Interactive whiteboards.

Two-dimensional scanners
document to be scanned


2D scanner or an image scanner-often abbreviated to just scanner, is a device that optically scans images, printed text, handwriting, or an object, and converts it to a digital image. The image is converted into an electronic form which can be stored in a computer.
The steps of scanning a document:

| 1 | Cover is raised |
| :--- | :--- |
| 2 | Document is placed in on glass panel and cover is closed |
| 3 | A bright light iluminates the documents lamp like xenon which produce very <br> bright white light |
| 4 | A scan head moves across the document. An image is produced. |
| 5 | The image is sent to a lens using series of mirrors. The lens focuses the <br> document image. |
| 6 | The focused image fall onto a charge couple device (CCD) which consists of <br> number of ICs |
| 7 | CCD is made up of light-sensitive elements (pixels). <br> Each element of CCD creates an electric charge when light falls on it and the <br> scanned image is converted into digital form. |
| 8 | Software produces digital image from electronic form |
| Optical character recognition (optical character reader) (OCR) |  |
| Scanner scans the document and then OCR converts it into |  |
| machine readable form i.e. text file format. These can be further |  |
| edited using text editors like MS Word. |  |
| It is widely used as a form of data entry from printed paper data |  |
| records. |  |

## Application of 2D scanners at an airport

Passengers fly into an airport from other countries. The airport has a security system that uses:

- computers
- scanners
+923002724734 /inqiaabpatel inqilab-patel

Page |59

- digital cameras

To gain entry to the country, each passenger must have a passport or identification (ID) card. This must contain a recent photograph and other personal data.
$>$ Passport or ID card is placed on a scanner that reads machinereadable characters and scans the photograph
> Camera takes an image of the passenger's face
$>$ Facial recognition software/ biometric software used to scan face
> Face image converted to digital format/ data by the camera
$>$ Digital image formed from scanned photo/ biometric data stored in passport
> Key features of the face are checked/ compared
The face shows several of the positions used by the face recognition software. Each position is checked when the software tries to compare
 two facial images. Data such as:
$>$ distance between the eyes
$>$ width of the nose
$>$ shape of the cheek bones
$>$ length of the jaw line
$>$ shape of the eyebrows
are all used to identify a given face.
When the image from the passport and the image taken by the camera are compared, these key positions on the face determine whether or not the two images represent the same face.

Tomography is a technique for displaying a representation of a cross section through a human body or other solid object using X-rays, radio frequencies, gamma imaging or ultrasound.
CT (COMPUTED TOMOGRAPHIC) Scanners are used to create a 3D image of a solid object.

## Steps:

1. At first a series of 2 D images of thin slices of object are taken.

2. Each 'slice' is then stored as a digital image in the computer memory.
3. Then these 2D 'slices' are combined to form a 3D image of object.

## Bar Code Reader/Scanner

A barcode is an optical machine-readable representation of data relating to the object to which it is attached in the form of a series of dark and light parallel lines of varying thickness. Bar codes store code number and serial number. In UPC (Universal Product Code) the actual left-hand and right-hand sides of the barcode have specific codes.
A barcode is an optical machine-readable representation of data relating to the object to which it is attached in the form of a series of dark and light parallel lines of varying thickness.

| Left side code | Digit | Right side code |
| ---: | :---: | :--- |
| 0001101 | 0 | 1110010 |
| 0011001 | 1 | 1100110 |
| 0010011 | 2 | 1101100 |
| 0111101 | 3 | 1000010 |
| 0100011 | 4 | 1011100 |
| 0110001 | 5 | 1001110 |
| 0101111 | 6 | 1010000 |
| 0111011 | 7 | 1000100 |
| 0110111 | 8 | 1001000 |
| 0001011 | 9 | 1110100 |

+923002724734 /inqilabpatel
inqílab-patel

Page |60


The steps of scanning bar code

| 1 | The barcode is first read by a red laser or red LED (LIGHT EMITTING DIODE). |
| :--- | :--- |
| 2 | Light is reflected back off the barcode; the dark areas reflect little or no light which allows the <br> bars to be read. |
| 3 | The reflected light is read by sensors (photoelectric cells). |
| 4 | As the laser or LED light is scanned across the barcode, a pattern is generated which is <br> converted into digital data - this allows the computer to understand the barcode. |
| 5 | For example: the digit ${ }^{\prime}$ ' on the left generates the pattern $\mathbf{L D} \mathbf{D} \mathbf{~ D ~ D ~ L ~ D ~ ( w h e r e ~} \mathrm{L}=$ light and <br> $\mathrm{D}=$ dark); this has the binary equivalent of $\mathbf{0} 111101$ (where $\mathbf{L}=\mathbf{0}$ and $\mathbf{D}=\mathbf{1})$. |
| 6 | If barcode are not scanned correctly the bar code number is types in manually using <br> keyboard |

When barcode has been read, then what happens?

- The barcode number is looked up in the stock database (the barcode is known as the KEY

FIELD in the stock item record); this key field uniquely identifies each stock item.

- When the barcode number is found, the stock item record is looked up.
- The price and other stock item details are sent back to the checkout (or POINT OFSALE

TERMINAL (POS)).

- The number of stock items in the record is reduced by one each time the barcode is read.
- This new value for number of stock items is written back to the stock item record.
- The number of stock items is compared to the re-order level; if it is less than or equal to this value, more stock items are automatically ordered.
- Once an order for more stock items is generated, a flag is added to the record to stop re-ordering every time the stock item barcode is read.
- When new stock

+923002724734 @inqilab



## Page |61

items arrive, the stock levels are updated in the database.

- The following flowchart shows how barcodes are used at the point of sale in an automatic stock control system.
- Select statements from the list below, using numbers only, to complete the flowchart.
- Q2: Winter2011 P11
- The following flowchart shows how barcodes are used at the point of sale in an automatic stock control system.
- Select statements from the list below, using numbers only, to complete the flowchart.


## Quick response (QR) codes

QR code (abbreviated from Quick Response Code) is the trademark for a type of matrix barcode. A QR code uses four standardized encoding modes (numeric, alphanumeric, byte/binary, and kanji) to efficiently store data; extensions may also be used.
A bar code can store up to 30 characters while in QR code 7000 digits can be stored.

## How keyboard works

Each individual key is a switch. When a key is pressed it generates a specific binary code, based on ASCII.
For example:
$>$ Pressing A key produces binary code 01100001, representi ng lower case letter a,
$>$ This binary code is sent to processor.
So processor recognises which key is pressed


2. Layers touch through hole

## Principle of operation of laser mouse:

| S No | Step |
| :--- | :--- |
| $\mathbf{1}$ | laser/light shines onto a surface through a (polished) ring at the base |
| $\mathbf{2}$ | the light is reflected from the surface through the ring |
| $\mathbf{3}$ | sensor detects reflected light |
| $\mathbf{4}$ | capturing details/photograph of surface (under the ring) at about 1500 times <br> per second |
| $\mathbf{5}$ | as the mouse moves the sensor detects changes in the surface <br> detail/photograph |
| $\mathbf{6}$ | These changes are translated into movement (change of x and y co-ordinates) |
| $\mathbf{7}$ | the computer/software updates the position of the cursor on the screen |

## Microphone:

Microphones are a type of transducer - a device which converts energy from one form to another. Microphones convert acoustical energy (sound waves) into electrical energy (the audio signal). Microphones have diaphragms.
When a microphone picks up sound, a diaphragm vibrates producing an electric signal. This signal goes to a sound card and is converted into digital values and stored in the computer.
+923002724734 /inqilabpatel inqilab-patel

## Analog signals



How inkjet printers work:

| S No | Step |
| :--- | :--- |
| 1 | Printer driver translates data into a suitable format for the printer |
| 2 | Printer receives data from the computer and stores the data in the <br> printer's buffer |
| 3 | Paper feed stepper motor activated; sheet of paper fed from paper tray |
| 4 | The print head moves across page; ink is sprayed each time the print <br> head pauses for a fraction of a second |
| 5 | Paper feed stepper motor advances paper a fraction of a cm after each <br> complete head pass |

How Laser Printers work:

| S <br> No | Step |
| :--- | :--- |
| 1 | The printer driver ensures that the data is in a format that the laser printer can <br> understand |
| 2 | Data is then sent to the laser printer and stored temporarily in the printer buffer |
| 3 | The printing drum is given a positive charge |
| 4 | As the printing drum rotates, a laser scans across it; this removes the positive <br> charge in certain areas |
| 5 | Negatively-charged areas are then produced on the printing drum; these match <br> exactly with the text and images to be printed |
| 6 | The printing drum is coated in positively-charged toner; this then sticks to the <br> negatively-charged parts of the printing drum |
| 7 | A negatively-charged sheet of paper is then rolled over the printing drum |
| 8 | The toner on the printing drum is now transferred to the paper to reproduce the <br> required text ad images |
| 9 | The paper goes through a fuser which melts the toner so it fixes permanently to the <br> paper |

## How to create a solid object using a 3D printer

The following describes some of the features of 3D printing:

- Various types of 3D printers exist; they range from the size of a microwave oven up to the size of a small car.
- 3D printers use ADDITIVE manufacturing (i.e. the object is built up layer by layer);
- Direct 3D printing uses inkjet technology; a print head can move left to right as in a normal printer.

However, the print head can also move up and down to build up the layers of an object.

- Binder 3D printing is similar to direct 3D printing. However, this method uses
two passes for each of the layers; the first pass sprays dry powder and then on the second pass a

+923002724734
/inqilabpatel
inqílab-patel
@inquilab


## Page |63

binder (a type of glue) is sprayed to form a solid layer.

- Newer technologies are using lasers and UV light to harden liquid polymers; this further increases the diversity of products which can be made.
There are a number of steps in the process of producing an object using these 3Dprinters. The steps are summarized here



## Monitoring \& Control System

Sensors and actuators
Sensors and actuators are devices that are used for automatic input and control in real-time systems.
Sensors are electronic devices which generate signals in the response of an event like if temperature increases beyond of a certain set limit temperature sensor generate signals and send to processor. The signals generated by sensors are generally in analogue form and need to be converted into digital form so as processor can understand it. ADC (Analogue-to-Digital Converter) is used to convert these analogue signals into digital signals.
Actuators are parts of machine which are controlled by processor. The processor sends digital signals, which are converted into analogue signals using DAC (Digital-to-Analogue Converter) so as actuator can act upon it.
+923002724734
/inqilabpatel
inqíla6-pate $\$

Page |64

### 1.3.5 Memory, storage devices and media

## Storage Media \& Devices

The device that actually holds the data is known as the storage medium ('media' is plural).
device that saves data onto the storage medium, or reads data from it, is known as storage device.
Storage Device: The machine which stores on storage medium.
Storage Media: The physical material in which a devices stores data.

A computer holds programs and data in three
 of device:

1. Primary - limited-capacity and rapid-access during processing
2. Secondary - larger-capacity and slower-access to keep data/programs for future use. They remain inside computer.
3. Off-line - portable, they are removed after read/write data.

## Measuring the size of memory

4 bits $=1$ nibble, 8 bits=1 byte, $2^{20}$ Bytes $=1024 \mathrm{~KB}=1$ Mega Byte, $2^{40}$ Bytes $=1024$ GB= Tera Byte
$2^{10}$ Bytes $=1024$ bytes $=1$ Kilo Byte
$2^{30}$ Bytes $=1024 \mathrm{MB}=1$ Giga Byte,
$2^{50}$ Bytes $=1024$ TB=1 Peta Byte

Differences between SRAM \& DRAM

| SRAM | DRAM |
| :--- | :--- |
| does not need to be refreshed as the <br> transistors hold the data as long as the <br> power supply is on | requires data to be refreshed periodically in <br> order to retain the data |
| requires less power consumption | requires higher power consumption which is <br> significant when used in battery-powered <br> devices |
| has more complex circuitry | Has simpler circuitry |
| used predominantly in cache memory of <br> processors where speed is important |  |

Differences between RAM and ROM

|  | RAM | ROM |
| :--- | :--- | :--- |
| What does it <br> contain? | Operating system, programs and <br> data which are currently being <br> used. | A program used to start the computer <br> called the 'boot program' or BIOS. |
| Can the contents <br> be changed? (Is it <br> volatile?) | Yes. <br> The contents of the RAM are <br> changed all the time while the <br> computer is running. | No. <br> The contents of ROM cannot normally <br> be changed. |

+923002724734
/inqialabpatel
@inqílab
inqifa6-pate\
Web ruknudain.com

## Computer Science with Ingilab Patel

## Page 65

| How big is it? | Typically 3-4Gb. <br> The larger the better because <br> this means that the computer <br> can run more programs at the <br> same time. | Typically $1-2 \mathrm{Mb}$. <br> Small because it only needs to store <br> the boot program. |
| :--- | :--- | :--- |

## Summer 15 P11)

Q1) Five storage devices are described in the table below.
In column 2, name the storage device being described.
In columns 3, 4, or 5, tick $(\checkmark)$ to show the appropriate category of storage.

| $1$ <br> Description of storage device | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: |
|  | Name of storage device | Category of storage |  |  |
|  |  | Primary | Secondary | Off-line |
| optical media which use one spiral track; red lasers are used to read and write data on the media surface; makes use of dual-layering technology to increase the storage capacity |  |  |  |  |
| non-volatile memory chip; contents of the chip cannot be altered; it is often used to store the start up routines in a computer (e.g. the BIOS) |  |  |  |  |
| optical media which use concentric tracks to store the data; this allows read and write operations to be carried out at the same time |  |  |  |  |
| non-volatile memory device which uses NAND flash memories (which consist of millions of transistors wired in series on single circuit boards) |  |  |  |  |
| optical media which use blue laser technology to read and write data on the media surface; it uses a single 1.1 mm polycarbonate disc |  |  |  |  |

(d) The LCD (liquid crystal display) on the clock face is back-lit using blue LEDs (light emitting diodes). The brightness of the clock face is determined by the level of light in the room. The amount of light given out by the LEDs is controlled by a control circuit.
Describe how the sensor, microprocessor and LEDs are used to maintain the correct brightness of the clock face.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(e) Modern LCD monitors and televisions use LED back-lit technology.

+923002724734
/inqilabpatel inqifa6-patel

Page |66
Give two advantages of using this new technology compared to the older cold cathode fluorescent lamp (CCFL) method.
1 $\qquad$

2
[2]

| Description of storage device | Name of storage device | Category of storage |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Primary | Secondary | Off-line |
| optical media which uses one spiral track; red lasers are used to read and write data on the media surface; makes use of dual-layering technology to increase the storage capacity | DVD |  |  | $\checkmark$ |
| non-volatile memory chip; contents of the chip cannot be altered; it is often used to store the start-up routines in a computer (e.g. the BIOS) | ROM | $\checkmark$ |  |  |
| optical media which uses concentric tracks to store the data; this allows read and write operations to be carried out at the same time | DVD-RAM | $\checkmark$ |  | ( ${ }^{\text {( }}$ |
| non-volatile memory device that uses NAND flash memories (which consist of millions of transistors wired in series on single circuit boards) | Solid State Drive/memory (SSD) |  | $\checkmark$ |  |
|  | (SD/XD card) (USB storage device) |  |  | ( ${ }^{\text {( }}$ |
| optical media that uses blue laser technology to read and write data on the media surface; it uses a single 1.1 mm polycarbonate disc | Blue-ray |  |  | $\checkmark$ |

(d) Any three from:

- uses a light sensor
- sends signal/data back to microprocessor
- signal/data converted to digital (using ADC)
- value compared by microprocessor with pre-set/stored value
- if value < stored value, signal sent by microprocessor ...
- ... to the voltage supply (unit)
- ... "value" of signal determines voltage supplied/brightness of LED [3]
(e) Any two from:
- no need to warm up
- whiter tint/more vivid colours/brighter image
- higher resolution
+923002724734 $f$ /inqilabpatel

Page |67

- much thinner monitors possible/lighter weight
- more reliable technology/longer lasting
- uses much less power/more efficient [2]


## Summer 15 P12)

Q 2)The majority of mobile phones use touch screens. Three common technologies are used by different mobile phone manufacturers. Choose one of the following mobile phone technologies:

- resistive
- capacitive
- infrared
Chosen technology
(i) Describe how your chosen technology works to allow a user to make selections by touching the screen.
$\qquad$
$\qquad$
$\qquad$
(ii) Give one benefit and one drawback of your chosen technology when used on mobile phone touch screens.
Benefit.
Drawback.
[2]

Q3)Four input devices, four descriptions and four applications are shown below. Draw a line to connect each input device to its correct description. Then connect each description to its correct application.
[6]

## Input device

Description
copies paper documents and converts the text and pictures into a computer-readable form

## Application


microphone
microphone

## pH sensor

> reads labels containing parallel dark and light lines using laser light or LEDs; the width of each
reading passports

```
detects changes in acidity
    levels; data is often in analogue form
```


> device that allows audio signals to be converted into electric signals; these can be interpreted by a computer after monitor soil in a scanner
$\qquad$
$\qquad$(ii) Give one benefit and one drawback of your chosen technology when used on mobile phone

## Page |68

Q 4a)Street lighting is controlled automatically. A light sensor and a microprocessor are used to decide when to switch each street light on or off.
Describe how the sensor, microprocessor and light interact to switch the street light on or off. Include in your answer how the microprocessor stops the street lights being frequently switched on and off due to brief changes in the light intensity.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$ .[5]
(b) Name three different sensors (other than light and pH ) and describe an application for each of these sensors.
A different application is needed for each sensor.
Sensor 1
Application
Sensor 2
Application
Sensor 3.
Application

## Marking Scheme

Q2) Either of the three options, resistive, capacitive or infra-red must be chosen
maximum of two marks from chosen technology:

## resistive

- uses multiple layers of material
- ... that transmit electric currents
- when the top layer/screen is pushed/touched into the lower/bottom layer
- ... the electric current changes and location of "touch" is found
capacitive
- current sent/flows out from all 4 corners of the screen
- when finger/stylus touches screen, the current changes
- the location of "touch" is calculated
infra-red
- an "invisible" grid on the screen (pattern of infra-red LED beams)
- sensors detect where the screen has been touched through a break in an infrared beam(s)
- the position where the screen touched is calculated [2]
(ii) 1 mark for benefit, 1 mark for drawback

Resistive
benefits:

- inexpensive/cheap to manufacture
- can use stylus/finger/gloved finger/pen
drawbacks:

[^0]+923002724734
/inqilabpatel
inquifa6-patel

Page |69

- vulnerable to scratching
- wears through time
- does not allow multi-touch facility
capacitive
benefits:
- good visibility in sunlight
- (very) durable surface
- allows multi-touch facility
drawbacks:
- screen (glass) will shatter/break/crack (on impact)
- cannot use when wearing (standard) gloves
infra-red
benefits:
- good durability
- allows multi-touch facility
- can use stylus/finger/gloved finger/pen
drawbacks:
- expensive to manufacture
- screen (glass) will shatter/break/crack (on impact)
- sensitive to dust/dirt [2

Q3)


Page |70
Q4(a) Maximum 5 marks in total for question part
Description of how street light is controlled: (max 4 marks)

- sensor sends signal/data to the microprocessor
- signal/data converted to digital/using ADC
- microprocessor compares value to a stored value
- if input value < stored value ...
- ... signal sent from microprocessor to actuator
- ... and light is switched on/off
- whole process continues in an infinite loop

Avoiding frequent on/off switches: (max 2 marks)

- microprocessor continues to keep light on/off for a pre-determined period
- after pre-determined period, sensor output is again sampled
(b) 1 mark for correct sensor, 1 mark for its matching application
(all THREE applications must be different)

| sensor | application |
| :--- | :--- |
| infra-red/motion | automatic doors <br> burglar alarm systems |
| temperature | chemical process <br> central heating/air con system <br> greenhouse environment <br> oven |
| sound/acoustic | burglar alarm systems <br> leak detection system <br> disco lighting |
| moisture/humidity | clothes drier <br> environmental control (greenhouse, <br> air con) |
| pressure | burglar alarm system <br> traffic light control <br> chemical process |
| carbon dioxide/ | pollution monitoring in a river <br> greenhouse environment (growth <br> control) <br> confined area (e.g. space craft) <br> Fish tank/Aquarium |
| magnetic field | mobile phone <br> anti-lock braking <br> CD players |

+923002724734 /inqilabpatel
inqifa6-patel

## Page 71

## Winter 15 P12)

Q5) Seven computer terms and seven descriptions are shown below.
Draw a line to link each computer term to its most appropriate description.

| Computer term | Description |
| :---: | :---: |
| Interface | Reduction of file size by permanently removing some redundant information from the file |
| Interrupt | File compression format designed to make photo files smaller in size for storage and for transmission |
| JPEG | File compression system for music which does not noticeably affect the quality of the sound |
| Lossless compression | Hardware component that allows the user to communicate with a computer or operating system |
| Lossy compression | The file is reduced in size for transmission and storage; it is then put back together again later producing a file identical to the original |
| MIDI | Signal sent to a processor which may cause a break in execution of the current routine, according to priorities |
| MP3 format | Standard adopted by the electronic music industry for controlling devices such as synthesisers and sound cards |

Q6) The flowchart on the opposite page shows what happens when the barcode on a product is scanned at the checkout in a supermarket. The barcodes are used in an automatic stock control system.
Several of the statements in the flowchart are missing.
Using item number only from the list below, complete the flowchart.

| Item number | Statement |
| :---: | :--- |
| $\mathbf{1}$ | Add flag to product record to indicate re-order made |
| $\mathbf{2}$ | Any more barcodes to scan? |
| $\mathbf{3}$ | Has the scanned barcode been found in the file? |
| $\mathbf{4}$ | Has the re-order flag already been added to the product <br> record? |
| $\mathbf{5}$ | Is number of product in stock <= re-order level? |
| $\mathbf{6}$ | Number of product in stock is reduced by 1 |
| $\mathbf{7}$ | Output an error message |
| $\mathbf{8}$ | Automatically send out order for new product |

+923002724734 /inqilabpatel inqifa6-patel
@ínqíab

Page |72


Page | 173
Q7)A security system uses sensors, a camera and a microprocessor to capture images of each person entering a large shopping mall.
(a) Describe how the sensors, camera and microprocessor interact to identify certain people entering the mall.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(b) Each image taken requires 1 MB of storage. If the camera captures an image every 5 seconds over a 24 hour period, how much storage is required?
Give your answer in gigabytes and show all your working.
$\qquad$
[2]
(c) The shopping mall has over 100 cameras. At the end of each day all these cameras send their images, captured over the last 24 hours, to a central computer.
Explain why the mall uses dedicated fibre optic cable rather than transmitting the data over the local broadband network.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## [2]

Q8)The steps to print a document using a laser printer are shown in the table below.
Put each step in the correct order. The first step has been done for you.
[8]

| Step | Order |
| :--- | :--- |
| As the printing drum rotates, a laser scans across it; this removes the positive charge <br> in certain areas |  |
| The printing drum is coated in positively-charged toner; this then sticks to the <br> negatively-charged parts of the printing drum |  |
| The paper goes through a fuser which melts the toner so it fixes permanently to the <br> paper |  |
| The printer driver ensures that the data is in a format that the laser printer can <br> understand | $\mathbf{1}$ |
| A negatively-charged sheet of paper is then rolled over the printing drum |  |
| Data is then sent to the laser printer and stored temporarily in the printer buffer |  |
| The toner on the printing drum is now transferred to the paper to reproduce the <br> required text and images |  |
| The printing drum is given a positive charge <br> Negatively-charged areas are then produced on the printing drum; these match <br> exactly with the text and images to be printed |  |

Q9) A remote-controlled model car contains RAM, ROM and a solid state drive. The car receives

+923002724734
/inquiabpatel
inqilab-patel
@inqílab

Page |74
radio signals from its remote control. It can only receive radio signals of a certain frequency. The manufacturer sets this frequency and the owner cannot change it. The owner of the model car can input their own sequence of movements from an interface underneath the car.
(a) Describe the purpose of each of the three types of memory supplied with the car.

RAM: $\qquad$
ROM:
Solid state drive: $\qquad$
(b) The owner needs to be able to enter their own sequence of movements for the model car. Name a suitable input device. Input device:

Give a reason for your choice of device.
$\qquad$
$\qquad$
(c) Explain why the model car uses a solid state drive rather than another type of secondary storage.
$\qquad$

Marking Scheme

+923002724734 /inqilabpatel
inqilab-patel
@inquíab

Page $\mid 75$
Q6)


- naming a suitable sensor, e.g infra-red, pressure, motion sensors, send signal/data to microprocessor
- signal/data is converted to digital (using an ADC)
- microprocessor instructs/send signals to camera to capture image/video
- captured image/video data sent to microprocessor either
- microprocessor compares the image/video with stored images/video...
- ... if person detected = stored image ...
- ...alert given to signal a person has been identified
or
- microprocessor compares the biometric data from an image/video with stored biometric data for images/video ...
-... if biometric data matched = stored data ...
-... alert given to signal a person has been identified
- Continual/repeated process
(b) 1 mark for correct calculation, 1 mark for correct answer
- number of photos $=12 \times 60 \times 24=17280$


Page |76

- memory requirement $=17280 / 1024=16.9$ (16.875)
$-(17280 / 1000=17.28 / 17.3$ is acceptable) [2]
(c) Any two from:
- (data transmission) is faster
- more secure/safer (because it is a dedicated line)
- (fibre optic transmission) is more reliable [2]

Q8)

| Step | Order |
| :--- | :---: |
| As the printing drum rotates, a laser scans across it; this removes the positive <br> charge in certain areas | $\mathbf{4}$ |
| The printing drum is coated in positively-charged toner; this then sticks to the <br> negatively-charged parts of the printing drum | $\mathbf{6}$ |
| The paper goes through a fuser which melts the toner so it fixes permanently to <br> the paper | $\mathbf{9}$ |
| The printer driver ensures that the data is in a format that the laser printer can <br> understand | $\mathbf{1}$ |
| A negatively-charged sheet of paper is then rolled over the printing drum | $\mathbf{7}$ |
| Data is then sent to the laser printer and stored temporarily in the printer buffer | $\mathbf{2}$ |
| The toner on the printing drum is now transferred to the paper to reproduce the <br> required text and images | $\mathbf{8}$ |
| The printing drum is given a positive charge | $\mathbf{3}$ |
| Negatively-charged areas are then produced on the printing drum; these match <br> exactly with the text and images to be printed | $\mathbf{5}$ |

Q9)
(a) RAM

- contains instructions/program/data currently in use

ROM
any one from:

- contains the start-up/bootstrap program
- contains/stores the setting for frequency (can't be changed)

Solid state drive

- stores the instructions/program/data (to operate the car) [3]
(b) 1 mark for device and 1 mark for corresponding reason

Device:

- touch screen
- key pad (NOT keyboard)

Reason:

- easy to use interface
- limited number of options
- small space/space is limited
- other devices such as mouse, keyboard, trackerball, ... not suitable [2]
(c) Any two from:
- A solid state drive has no moving parts
- A solid state drive has faster random access
- A solid state drive has a quick start up/shut down time (reduced latency)
- A solid state drive is very small
- A solid state drive is very light
- A solid state drive consumes very little power
/inqilabpatel
inqilab-patel

Page |77

- A solid state drive does not generate a lot of heat (therefore safer in this application) [2]


## Winter 15 P13)

Q10) a) Name an application which makes use of the following sensors. A different application should be used in each case.
Temperature $\qquad$
Magnetic field
Motion
[3]
(b) The flowchart on the opposite page shows how a light sensor and microprocessor are used to switch a street lamp on or off When the sensor reading is <= 50 light units, the lamp is turned on automatically. START
Several of the instructionshave been omitted from the flowchart. Using item numbers only from the list below, complete the flowchart; [5]


## Page |78

Q11) Sensors and a microprocessor monitor a car exhaust for high temperature and high carbon monoxide (CO) levels.
(a) Describe how the sensors and microprocessor are used to monitor the temperature and CO levels and warn the driver if either is out of range.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## [5]

Q12)A security system records video footage. One minute of video requires 180 MB of storage. The recording system can store several hours of video footage.
(a) Name and describe a suitable storage device for this recording system.
$\qquad$
$\qquad$
$\qquad$
(b) Calculate how much storage would be needed for 2 hours of video footage.

Show your working and give the answer in Gigabytes (GB).
$\qquad$
$\qquad$
$\qquad$
Q13)Passengers fly into an airport from other countries. The airport has a security system that uses:

- computers • scanners • digital cameras

To gain entry to the country, each passenger must have a passport or identification (ID) card. This must contain a recent photograph and other personal data. The passenger must:

- place their passport or ID card on a scanner that reads machine-readable characters and scans the photograph
- look towards a camera that takes an image of the passenger's face Describe how a computer checks whether the image just taken by the camera matches the scanned photograph.
$\qquad$
$\qquad$
$\qquad$
Q14)Name a suitable output device for each of the following applications. A different device should be used for each application.

| Application | Suitable output <br> device |
| :--- | :--- |
| Production of one-off photographs of very good quality |  |
| High volume colour printing of advertising flyers |  |
| Production of an object, which is built up layer by layer; used in <br> CAD applications |  |
| Converting electrical signals into sound |  |
| Showing enlarged computer output on a wall or large screen |  |

+923002724734
/inqilabpatel
@inquíab
inqilab-patel

Page |79
Q15)Four input devices are shown in the table below.
Give an application which makes use of each device and state a reason why the device is appropriate for that application. Your application must be different in each case.


## Marking Scheme Q10) <br> (a) Temperature <br> - central heating/ air con system <br> - greenhouse environment <br> - a chemical reaction/ process <br> Magnetic field <br> - anti-lock brakes on a car <br> - detection of motor vehicles (e.g. at traffic lights) <br> - reading magnetic ink characters on cheques <br> - geophysical surveys <br> Motion <br> - automatic doors <br> - burglar alarm [3] <br> (b)

+923002724734
@inquifab
/inqilabpatel
inqilab-patel

Page | 80


Q11)
(a) Any five from:

- sensors send signals/ data to microprocessor
- signal/ data converted to digital (by an ADC)
- microprocessor compares temperature/ carbon monoxide level/value with stored level/ value
- if CO level > stored value, microprocessor sends signal...
- if temperature > stored value, microprocessor sends signal...
- ...to light warning bulb on dashboard/ sounds alarm [5]
(b) (i) 2 marks for all correct conditions, 1 mark for 2 correct conditions

CO (carbon monoxide) level too high
oil pressure too low brake pads too thin [2]
(ii) 1

Page |81
position 1

| 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[2]
(iii) 1 mark for correct parity bit + 1 mark for remainder of binary value

| 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[2]
(iv) A 2 (allow follow through from part (iii)) [1

Q12)
(a) - Memory card/ SSD / HDD/ magnetic tape

- Suitable description of device given [2]
(b) 2 hours $=120$ minutes
$120 \times 180=21600$
21600/ 1024 (or 21600/ 1000)
$=21.1 \mathrm{~GB}$ (or 21.6 GB )
(1 mark for correct answer and 1 mark for correct calculation) [2]
Q13)
Any two from:
- facial recognition software/ biometric software used to scan face
- face image converted to digital format/ data by the camera
- digital image formed from scanned photo/ biometric data stored in passport
- key features of the face are checked/ compared [2]

Q14)

| Application | Suitable output <br> device |
| :--- | :--- |
| Production of one-off photographs of very good quality | Inkjet Printer |
| High volume colour printing of advertising flyers | LaserJet Printer |
| Production of an object, which is built up layer by layer; used in <br> CAD applications | 3D Printer |
| Converting electrical signals into sound | Speaker |
| Showing enlarged computer output on a wall or large screen | Multimedia Projector |
| Q15) |  |
| 1 mark for each named application + 1 mark for each matching reason for choice |  |


| Input device | Application and reason |
| :--- | :--- |
|  | Automatic doors <br> - detects a person when light beam broken and opens doors <br> Street lighting <br> - detects change in light and switches on/ off the street lights <br> Greenhouse <br> - ensures correct lighting conditions for growth of plants |
| Keyboard | Word processor/ spreadsheet/ database <br> - need to key in data manually (e.g. report writing) <br> Control room interface <br> - need to manually key in data (e.g. flow speed of liquid) |
| Barcode <br> reader | Supermarket checkout <br> - read barcodes to find prices, description |

+923002724734
@inqíab
/inqilabpatel

Page |82

|  | - allows automatic stock control <br> Library system <br> - can track books on loan <br> - can link books to borrowers using bar coded cards <br> Airport check-ins <br> - barcodes on luggage to track whereabouts |
| :--- | :--- |
| Touch <br> screen | Ticket/ information kiosk <br> - easy method for public to enter data <br> - limited number of options <br> Mobile phone/ tablet <br> - easy method to input data <br> - use of icons for application selection <br> Control room interface <br> - faster/ easier method to input data into system <br> - fewer chances of error since number of choices limited |

## [8]

## Winter 15 P11)

Q14) (a) Four hardware items are shown in the table below.
For each hardware item:

- name a suitable application
- state how it is used in the application

Give a different application in each case.
[8]

| Hardware item | Application | How the hardware item is used |
| :---: | :---: | :---: |
| Microphone |  | .... |
| Barcode reader |  |  |
| Touch screen |  |  |
| Infrared sensor |  | $\qquad$ |

(b) Describe two differences between Blu-ray discs and DVDs.

1:
2:

## [2]

(c) Describe two differences between DVD-R and DVD-RAM.

1:

2 :
$\qquad$

Page |83
Q15) a) Inkjet printers and laser printers are two common types of printer. Describe the features and principles of operation of each type of printer.
(i) Inkjet printer
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(ii) Laser printer
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(b) Another type of printer is the 3D printer. Describe 3D printing.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## [3]

Q16) A passenger logs onto an airline website and types in the reference number for their flight. Once the passenger accesses their account they can choose their seat and also print out a boarding pass which contains a unique barcode. This barcode is scanned at the airport check-in desk. Name one input and one output device found at the check-in desk and give a reason for your choice.
Input device:
Reason:
Output device:
Reason:

Summer 16 P11_P13
Q17 (a) Five sensors and five applications are shown below.
Draw a line to link each sensor to its most appropriate application.

## [4]

Application

## SensorURL

## Light sensor

Monitor the pollution levels in a river

Moisture sensor

Gas sensor
Control the switching off and on of street lights

Detect intruders breaking into a building

```
pH sensor
```

Monitor the amount of water left in clothes in a dryer

## Pressure

Monitor acidity levels in the soil in a green house
(b) Automatic doors in a building are controlled by the use of infrared sensors and a microprocessor.
Describe how the sensors and the microprocessor are used to automatically open a door as a person approaches.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Q18 (a) Nikita wishes to print out some documents and connects her printer to the computer using one of the USB ports.
(i) Identify what type of data transmission is being used.
(ii) Give three reasons for using a USB port............................................................
1.
1.
$\qquad$
2


## Computer Science with Ingilab Patel

Page |85

3 [3]
(iii) The printer runs out of paper while it is printing the documents. A signal is sent to the processor to request that the problem is dealt with.
Name this type of signal.
[1]
(b) State one suitable application for each printer below. A different application must be given for each printer. Inkjet printer

3D printer [2]
(c) Name another type of printer and describe one way in which it is different from the printers named in part (b).

Give an application for this printer.
Type of printer

## Description

## Application

Q19) (a) Four examples of optical storage media are:

- DVD-RW
- DVD-RAM
- CD-ROM
- Blu-ray disc

The table below shows four features of optical storage media.
Tick $(\checkmark)$ the appropriate boxes in the table to indicate which of the features apply to each example of optical storage media.

|  | Single <br> track | Many concentric <br> tracks | Blue laser used <br> to read/ write <br> data | Red laser used <br> to read/ <br> write data |
| :--- | :--- | :--- | :--- | :--- |
| DVD-RW |  |  |  |  |
| DVD-RAM |  |  |  |  |
| CD-ROM |  |  |  |  |
| Blu-ray disc |  |  |  |  |

(b) Solid state drives (SSD) are replacing hard disc drives (HDD) in some computers.
(i) Give three reasons why this is happening.

1
$\qquad$
2 $\qquad$
$\qquad$
3 $\qquad$

+923002724734
/inqilabpatel
inqifa6-patel

Page |86
(ii) Explain why many web servers still use hard disc drive (HDD) technology.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## [2]

## Marking Scheme

Q17a)

(b) Any four from:

- sensor(s) sends signal/data to microprocessor
- signal/data converted to digital (using an ADC)
- microprocessor compares signal/data with pre-set/stored value
-if sensor(s) signal/data indicates the presence of a person / the door needs to be opened / a match is found / door is closed
-... microprocessor sends a signal to an actuator ...
$-\ldots$ to operate/drive a motor to open the door
Q18)
\(\left.$$
\begin{array}{|l|l|}\hline \begin{array}{l}\text { (a) (i) } \\
\text { serial }\end{array}
$$ \& {[1]} <br>
\hline (ii) \& Any three from: <br>
\hline- \& automatically detects the hardware/installs drivers <br>
\hline- \& plug only goes in one way/can't connect incorrectly <br>
\hline- \& supports different data transmission speeds/a range of data transmission speeds <br>
\hline- \& has become the industry standard/universally used <br>

\hline- \& backwards compatible (with earlier versions of USB ports)\end{array}\right]\)| [3] |
| :--- |
| (iii) <br> interrupt |

Page |87
(b) 1 mark each use of printer, max 1 mark per printer.

| inkjet printer | - (small quantities of) documents <br> - photographs |
| :--- | :--- |
| 3D printer | - (physical) prototype (from CAD) <br> - (physical) model (from a blueprint) |

(c) 1 mark for naming printer + 1 mark for description + 1 mark for application

Laser printer

- uses toner/powder ink
- uses (positive and negative) charged drums // rotating drum
- uses static charge
- no moving head
- faster at printing
- high volume output/high speed
- producing flyers/leaflets/magazines [3]

This is an example, other types of printers can be credited.
Q19)

|  | Single <br> track | Many concentric <br> tracks | Blue laser used <br> to read/ write <br> data | Red laser used <br> to read/ <br> write data |
| :--- | :---: | :--- | :--- | :--- |
| DVD-RW | $\checkmark$ |  |  | $\checkmark$ |
| DVD-RAM |  | $\checkmark$ |  | $\checkmark$ |
| CD-ROM | $\checkmark$ |  |  | $\checkmark$ |
| Blu-ray disc | $\checkmark$ |  | $\checkmark$ |  |

(b) (i) Any three from:

- don't need to "get up to speed" to work properly/no latency
- lower/less power consumption/more energy efficient
- run cooler
- run quieter
- data access is faster
- occupies less physical space/more compact
- lighter, so more suitable for a portable computer/laptop
- no moving parts so more reliable/durable in a portable computer/laptop [3]
(ii) Any two from:
- HDD is cheaper for larger amounts of storage space
- HDD has greater longevity for read/write functions
- Expensive to change the technology // HDD are trusted technology
- No requirement for the increased speed of SSD


## Summer 16 qp12

Q20) Motion sensors are used in a security system to detect intruders.
Name three other sensors that could be used in the following applications.
Give a different type of sensor for each application.

| Application | Sensor |
| :--- | :--- |
| controlling street lights |  |
| monitoring a river for pollution |  |
| controlling traffic lights |  |

+923002724734
@inquíab

Page |88
Marking Scheme
Q20)

| Application | Sensor |
| :--- | :--- |
| controlling street lights | Light |
| monitoring a river for pollution | Gas, pH, temperature, light |
| controlling traffic lights | pressure, magnetic field, |

Q21 ) Six descriptions and six devices are shown below.
Draw a line to link each description to the correct device.

## Description

Allows a user to write on a surface using a pen; text and drawings are then captured electronically and stored for later use.

Converts sound into an electrical signal/voltage.

Uses thermal bubble and piezoelectric technology to produce a hard copy.

Uses a bright white light source and micro mirrors (on a chip) to produce an image to be shone onto a wall or screen.

Converts a hard copy document into an electronic form to be stored as a file on a computer.

Uses negatively charged images on a rotating drum and positively charged toner to output a hard copy.

## Device

## Digital Light Projector

Inkjet printer

Interactive whiteboard

Microphone

Scanner (2D)

Q21) 9 In the following barcode, each binary number is made up of seven bars.
/inqilabpatel
@inqíab

Page |89
Each bar is black or grey.
A black bar is interpreted as a " 1 " and a grey bar is interpreted as a " 0 ".
(a) Write the binary numbers that would be produced from this barcode:

## Binary number A Binary number B

Binary number A:

|  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Binary number B :

|  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(b) This barcode system uses odd parity.

Write the parity bit for each of the binary numbers in part (a):

## Parity bit

Binary number A:
Binary number B:
Q22 There are six descriptions in the table below.
Complete the table below by writing the correct storage device or media in the box next to each
description.
[6]
Storage device
Description or media

Non-volatile memory that can only be read from and not written to.
Optical storage media that allows very high storage capacity by using blue/violet laser technology.
Volatile memory that stores data, programs and the parts of the operating system that are currently in use.
Optical storage media that uses a single spiral track and uses dual layer technology, allowing high data storage capacity.
Device that stores data by controlling the movement of electrons within a microchip; there are no moving parts.
Optical storage media that uses concentric tracks allowing writing and reading to take place at the same time.

## Winter 2016 P12

Q23) A security system is installed in a house. A hexadecimal number is entered to activate or deactivate the alarm.
(a) The alarm code is set to hexadecimal number $2 \mathbf{A F}$

Show how this number would be stored in a 12-bit binary register.[3]

+923002724734
/inqilabpatel
inqifa6-patel

Page |90
(b) Identify two sensors that the security system could use to detect intruders.

Describe how each sensor could be used in the security system.
Sensor 1
Description
$\qquad$
$\qquad$
Sensor 2
Description
$\qquad$
$\qquad$

## Marking Scheme

(a) 1 mark per nibble

001010101111
(b) 1 mark for identification of each sensor, max 2 for each description

Infrared/motion sensor

- Receives infrared rays/heat
- Sends data to microprocessor
- Receives microwaves
- Placed in the corner of a room, across a doorway
- Used to detect the heat of an intruder // used to detect if an infrared beam has been broken by an intruder


## Pressure sensor

- Receives current if circuit created // stops receiving current if circuit is broken
- Sends data to microprocessor
- Placed on a window/door, at the entrance
- Used to detect a change in pressure


### 1.3.6 Operating systems

### 1.3.7High- and low-level languages and their translators

## Summer 15 P11)

Q 1) Five statements about interpreters and compilers are shown in the table below. Study each statement.
Tick $(\checkmark)$ to show whether the statement refers to an interpreter or to a compiler. [5]

| Statement | Interpreter | Compiler |
| :--- | :--- | :--- |
| takes one statement at a time and executes it |  |  |
| generates an error report at the end of translation of the <br> whole program |  |  |
| stops the translation process as soon as the first error is <br> encountered |  |  |
| slow speed of execution of program loops |  |  |
| translates the entire program in one go |  |  |


| Statement | Interpreter | Compiler |
| :--- | :---: | :---: |
| takes one statement at a time and executes it | $\checkmark$ |  |
| generates an error report at the end of translation of the <br> whole program |  | $\checkmark$ |
| stops the translation process as soon as the first error is <br> encountered | $\checkmark$ |  |
| slow speed of execution of program loops | $\checkmark$ |  |
| translates the entire program in one go |  | $\checkmark$ |

## Summer 15 P12)

Q2) (a) Five statements about interpreters and compilers are shown in the table below. Study each statement.
Tick $(\checkmark)$ to show whether the statement refers to an interpreter or to a compiler.

| Statement | Interpreter | Compiler |
| :--- | :--- | :--- |
| creates an executable file that runs directly on the <br> computer |  |  |
| more likely to crash the computer since the machine <br> code produced runs directly on the processor |  |  |
| easier to debug since each line of code is analysed <br> and checked before being executed |  |  |
| Slow speed of execution of program loops |  |  |
| it is more difficult to modify the executable code, since <br> it is in machine code format |  |  |

(b) State why a compiler or an interpreter is needed when running a high-level program on a computer.
(c) Give one benefit of writing a program in a high-level language.
$\qquad$
$\qquad$
(d) Give one benefit of writing a program in a low-level language.
(e) Study the following three sections of code.

A: 10101101
11001110
10110111
B: LDD X
INC X
STA Y
C: $\quad$ FOR $x \leftarrow 1$ TO 10
READ n
ENDFOR
Identify, using the letters A, B or C, which of the above codes is an example of assembly code, highlevel language code or machine code:
Assembly code
High-level language code
Machine code
Marking Scheme
a)

| Statement | Interpreter | Compiler |
| :--- | :---: | :---: |
| creates an executable file that runs directly on the computer |  | $\checkmark$ |
| more likely to crash the computer since the machine code <br> produced runs directly on the processor |  | $\checkmark$ |
| easier to debug since each line of code is analysed and <br> checked before being executed | $\checkmark$ |  |
| slow speed of execution of program loops | $\checkmark$ |  |
| it is more difficult to modify the executable code, since it is in <br> machine code format |  | $\checkmark$ |

(b) Any one from:

- code is required to be converted into machine code/binary
- code needs to be produced that can be understood by the computer
(c) Any one from:
- close to English/native/human language
- easier/faster to correct errors/read/write
- works on many different machines/operating systems (portable)
(d) Any one from:
- work directly on registers/CPU
- more control over what happens in computer

Page 93

- can use machine specific functions
(e)

Assembly code: B
High-level language code: C
Machine code: A

## Winter 15 P11)

Q3) State three features of a typical operating system.
1:
$2:$ $\qquad$
3: $\qquad$
[3]

## Summer 16 qp12

Q4) Complete the following by writing either compiler, interpreter or assembler in the spaces provided.

# [3] 

. - translates source code into object code.

- translates low-level language into machine code.
- stops the execution of a program as soon as it encounters an error.

Marking Scheme
compiler
assembler
interpreter

## Winter 16 p12

Q5) (a) Give two reasons why a programmer would choose to write code in a low-level language.
1.
$\qquad$
2. $\qquad$
(b) High-level languages require either an interpreter or a compiler to translate the program.

The table below lists a number of statements about language translators.
Tick $(\checkmark)$ to show which statements refer to interpreters and which refer to compilers.

| Statements | Interpreter ( $\checkmark$ ) | Compiler ( $\checkmark$ ) |
| :--- | :--- | :--- |
| Translates the source code into machine code all at once |  |  |
| Produces an executable file in machine code |  |  |
| Executes a high-level language program one instruction at a <br> time |  |  |
| Once translated, the translator does not need to be present <br> for the program to run |  |  |
| An executable file is produced |  |  |



```
2210_0478_16w_qp_12
```

Page |94
Q6) State four functions of an operating system.
1
2
3
4
Marking Scheme
Q5 a) - direct access to computer processor / special hardware // machine dependent instructions - uses up less memory

- can increase the speed of processing a program // executes instructions faster [2]

| Statements | Interpreter <br> (3) | Compiler <br> (3) |
| :--- | :---: | :---: |
| Translates the source code into machine code all at <br> once |  | $\checkmark$ |
| Produces an executable file in machine code |  | $\checkmark$ |
| Executes a high-level language program one <br> instruction at a time | $\checkmark$ |  |
| Once translated, the translator does not need to be <br> present for the program to run |  | $\checkmark$ |
| An executable file is produced |  | $\checkmark$ |

Q6) Any four from:

- Provides a user interface
- Handles interrupts / errors
- Memory management
- File management
- Manages peripherals (inputs/outputs)
- Provides security methods
- Allows multitasking
- Manages multiprogramming
- Enables batch processing
- Manages software installation / removal
- Allows creation of multiple accounts
- Levels of access
+923002724734
@inqíab
/inqilabpatel
inqilab-patel

Page $\mid 95$

### 1.4 Security <br> 1.5 Ethics <br> 1.2.2 Security aspects

Malware: A software that is designed to damage or disrupt a computer
Virus: Program or code that replicates itself and is designed to amend, delete or copy data and files on a user's computer without their consent
Spyware: Software that gathers information by monitoring key presses on a user's computer and relays the information back to the person who sent the software
Hacking: The act of gaining illegal access to a computer system without the owner's consent
Hacker: A person who tries to gain illegal access to a computer or a network.
Phishing: Creator of code sends out a legitimate-looking email in the hope of gathering personal and financial data; it requires the recipient to follow a link in the email or open an attachment
Pharming: Malicious code installed on the hard drive of a user's computer or on the web server; this code will re-direct user to a fake web site without their consent
Firewall: is a hardware or a software that is used between the user's computer and the network to examine the data traffic to make sure it meets certain criteria.
Cookies: Information that a website stores about a user on the user's hard disk; this enables the website to remember details about the user when they next visit the website.
Security protocols
There are two forms of security protocols when using the internet:

- Secure Sockets Layer (SSL)
-Transport Layer Security (TLS).
SECURE SOCKETS LAYER (SSL) is a type of protocol (a set of rules used by computers to communicate with each other across a network). This allows data to be sent and received securely over the internet in encrypted form.

The user's web browser sends a message so that it can connect with the required website which is secured by SSL


If the web browser can authenticate this certificate, it sends a message back to the web server to allow communication to begin

Once this message is received, the web server acknowledges the web browser, and the SSL-encrypted two-way data transfer begins
+923002724734 /inqilabpatel in inqilab patel
@inqíab inqifa6-patel

Page |96
TRANSPORT LAYER SECURITY (TLS) is similar to SSL but is a more recent security system. TLS is a form of protocol that ensures the security and privacy of data between devices and users when communicating over the internet. It is essentially designed to provide encryption, authentication and data integrity in a more effective way than its predecessor SSL.
TLS is formed of two layers:
-Record protocol: this part of the communication can be used with or without encryption (it contains the data being transferred over the internet).
-handshake protocol: this permits the website and the client (user) to authenticate each other and to make use of encryption algorithms (a secure session between client and website is
established). Only the most recent web browsers support both SSL and TLS which is why the older SSL is still used in many cases. But what are the main differences between SSL and TLS since they both effectively do the same thing?

- It is possible to extend TLS by adding new authentication methods.
-TLS can make use of SESSION CACHING which improves the overall performance 158 compared to SSL.
-TLS separates the handshaking process from the record protocol (layer) which holds all the data.


## Session caching

When opening a TLS session, it requires a lot of computer time (due mainly to the complex encryption keys being used). The use of session caching can avoid the need to utilise so much computer time for each connection. TLS can either establish a new session or attempt to resume an existing session; using the latter can considerably boost system performance.
Encryption Algorithm:

| S | Sender (A) | Recipient (B) |
| :---: | :---: | :---: |
| 1 | The sender uses an encryption algorithm | The recipient uses the same encryption algorithm |
| 2 | The sender chooses a secret value ( x ) e.g. $x=2$ | The recipient chooses another secret value (y) $\text { e.g. } y=4$ |
| 3 | Take a prime number e.g. 7 | Take same prime number e.g. 7 |
| 4 | Perform following algorithm <br> - Find remainder after dividing Prime power $x$ by 11 i.e. <br> 7×MOD 11 <br> In our example <br> $7^{2}$ MOD 11=49 MOD 11=5 | Perform following algorithm <br> - Find remainder after dividing Prime power y by 11 i.e. <br> 7yMOD 11 <br> In our example <br> $7^{4}$ MOD 11=2401 MOD 11=3 |
| 5 | This value is sent to recipient | This value is sent to sender |
|  | The receiving value is put in the same algorithm by replacing prime (7) <br> 3×MOD 11 <br> In our example <br> $3^{2}$ MOD 11=9 MOD 11=9 | The receiving value is put in the same algorithm by replacing prime (7) <br> $5^{y} \mathrm{MOD} 11$ <br> In our example $5^{4}$ MOD 11=625 MOD 11=9 |
|  | Now KEY DISTRIBUTION PROBLEM is solved both have same key to encrypt and decrypt without distributing over network |  |

+923002724734 /inqilabpatel inqifa6-patel

## Page 97

## Summer 15 P11)

Q1) Choose six correct terms from the following list to complete the spaces in the paragraphs below:

- encryption
- file name
- firewall
- HTML tags/text
- IP address
- protocol
- proxy server
- SSL certificate
- web server name

A user enters a URL. The web browser breaks up the URL into three components:
1
2
3
The web server returns the selected web page.
The web browser reads the from the selected page and shows the correctly formatted page on the user's screen. A is used between the user's computer and the network to examine the data traffic to make sure it meets certain criteria.
To speed up the access to the web pages next time, a is used between the computer and web server; this device uses a cache to store the website home page after it has been accessed for the first time.
[6]
Q2(a) Viruses, pharming and phishing are all examples of potential Internet security issues. Explain what is meant by each of these three terms.
Virus:
Pharming: $\qquad$
Phishing:
$\qquad$
(b) An online bank requires a client to supply an 8-digit code each time they wish to access their account on the bank's website.
Rather than ask the client to use a keyboard, they are requested to use an on-screen keypad (shown on the right) to input the 8-digit code.
The position of the digits on the keypad can change each time the website is visited.
The client uses a mouse or touch screen to select each of the8 digits.
(i) Explain why the bank has chosen to use this method of entering the 8 digits.
$\qquad$
$\qquad$

[^1]

## Compuresidece wihnuibibetal

Page |98

## Name:

Description:

## [2]

Marking Scheme
Q1) 1 mark per correct word
1 protocol 2 web server name accept 3 file name
HTML tags/text
firewall
proxy server

## Q2(a) virus

any two from:

- program/software that replicates/copies itself
- can delete or alter files/data stored on a computer
- can make the computer "crash"/run slow
pharming
any two from:
- malicious code/software installed on a user's hard drive/actual web server
- this code redirects user to a fake website (without their knowledge)
- to obtain personal/financial information/data


## phishing

any two from:

- legitimate-looking emails sent to a user
- as soon as recipient opens/clicks on link in the email/attachment
- ... the user is directed to a fake website (without their knowledge)
- To obtain personal/financial information/data [6]
(b) (i) Any two from:
- spyware/key logging software can only pick up key presses
- using mouse/touch screen means no key presses to log
- the numbers on the key pad are in random/non-standard format, which makes it more difficult to interpret [2]


## Summer 15 P12)

Q3 (a) Four statements about cookies are shown in the table below. Study each statement. Tick $(\checkmark)$ to show whether the statement is true or false.

| Statement | True | False |
| :--- | :--- | :--- |
| they are a form of spyware |  |  |
| they are used only in advertising |  |  |
| they are used to track browser use |  |  |
| they act in the same way as a virus |  |  |

+923002724734 /inqilabpatel
@inquilab
inqifa6-patel
(b) Five descriptions and five security issues are shown below.

Draw a line to connect each description to the correct security issue.

## Description

> Malicious code installed on the hard drive of a user's computer or on the web server; this code will re-direct user to a fake web site without their consent

Software that gathers information by monitoring key

## Security issue

hackina
pharmina presses on a user's computer and relays the information back to the person who sent the software

Program or code that replicates itself and is designed to amend, delete or copy data and files on a user's computer without their consent

The act of gaining illegal access to a computer system without the owner's consent

Creator of code sends out a legitimate-looking email in the hope of gathering personal and financial data; it requires the recipient to follow a link in the email or
spvware

## phishina

## virus

Q4 (a) State what is meant by the term SSL.
(b) The following stages take place when a user wishes to access a secure website.

Put each stage in sequence by writing the numbers 1 to 6 in the column on the right. The first one has been done for you.
[5]

| Stage | Sequence <br> number |
| :--- | :---: |
| the encrypted data is then shared securely between the web browser and <br> the web server |  |
| the web browser attempts to connect to a website which is secured by SSL | $\mathbf{1}$ |
| the web server sends the web browser a copy of its SSL certificate |  |
| the web browser requests the web server to identify itself |  |
| the web server will then send back some form of acknowledgement to allow <br> the SSL encrypted session to begin |  |
| the web browser checks whether the SSL certificate is trustworthy; if it is, <br> then the web browser sends a message back to the web server |  |

+923002724734
@inqílab
/inqilabpatel
inqilab-patel

Page |100
Q5) Five computing terms are described below.
Write the name of the term being described.
Software that anyone can download for free from the Internet and then use without having to pay any fees. The usual copyright laws apply and a user license is important.

Software that gives the user the chance to try it out free of charge before actually buying it. The software is subject to the usual copyright laws. As a rule, not all the features found in the full version are available at this stage.
Software where users have freedom to run, copy, change and adapt it. This is an issue of liberty and not of price since the software guarantees freedom and the right to study and modify the software by having access to the actual source code

Set of principles that regulates the use of computers in everyday life. This covers intellectual property rights, privacy issues and the effects of computers on society in general

The taking of somebody's idea or software and claim that the idea or software code were created by the "taker".
[5]
Marking Scheme
Q3)

| Statement | True | False |
| :--- | :---: | :---: |
| they are a form of spyware |  | $\checkmark$ |
| they are used only in advertising |  | $\checkmark$ |
| they are used to track browser use | $\checkmark$ |  |
| they act in the same way as a virus |  | $\checkmark$ |

Q4) (a) Any one from:

- secure sockets layer
- encrypts data being transmitted
- use of https
- use public and private keys
b)

| Stage | Sequence <br> number |
| :--- | :---: |
| the encrypted data is then shared securely between the web browser and <br> the web server | 6 |
| the web browser attempts to connect to a website which is secured by SSL | $\mathbf{1}$ |
| the web server sends the web browser a copy of its SSL certificate | 3 |
| the web browser requests the web server to identify itself | 2 |
| the web server will then send back some form of acknowledgement to allow <br> the SSL encrypted session to begin | 5 |
| the web browser checks whether the SSL certificate is trustworthy; if it is, <br> then the web browser sends a message back to the web server | 4 |

Q5)
Freeware
Shareware
+923002724734 /inqilabpatel inqifa6-patel

Page |101
Free software
(Computer) Ethics
Plagiarism

## Winter 15 P12)

Q6) 1 There are a number of security risks associated with using the Internet.
Name three of these risks. For each, state why it is a risk and describe how the risk can be minimised.
Security risk 1:
Why it is a risk:
How to minimize the risk:
Security risk 2:
Why it is a risk:
How to minimize the risk:
Security risk 3 :
Why it is a risk:
How to minimize the risk:

## Marking Scheme

1 mark for each risk + 1 mark for corresponding reason why it is a risk and 1 mark for method of minimisation

| Risk: | hacking |
| :--- | :--- |
| Reason: | illegal/unauthorised access to data <br> deletion/amendment of data |
| Minimised: | use of passwords/user ids <br> use of firewalls <br> encrypt data/encryption |
| Risk: | virus |
| Reason: | can corrupt/delete data <br> cause computer to crash/run slow <br> can fill up hard drive with data |
| Minimised: | use of /run anti-virus (software) <br> do not download software or data from unknown <br> sources |
| Risk: | spyware/key logging (software) <br> Reason: <br> can read key presses/files/monitors on a user's <br> computer |
| Minimised: | use of/run anti-spyware (software) <br> use data entry methods such as drop-down boxes to <br> minimise risk |
| Risk: | phishing |
| Reason: | link/attachments takes user to fake/bogus website <br> website obtains personal/financial data |


+923002724734
/inqilabpatel
@inqíab
inqifa6-patel

Page |102

| Minimised: | do not open/click emails/attachments from unknown <br> sources <br> some firewalls can detect fake/bogus websites |
| :--- | :--- |
| Risk: | pharming |
| Reason: | redirects user to fake/bogus website <br> redirection obtains personal/financial data |
| Minimised: | only trust secure websites, e.g. look for https <br> check the URL matches the intended site |
| Risk: | credit card fraud/identity theft |
| Reason: | loss of money due to misuse of card/stealing data |
| Minimised: | set passwords <br> encrypt data/encryption |
| Risk: | cracking |
| Reason: | illegal/unauthorised access to data |
| Minimised: | setting strong passwords <br> encrypt data/encryption |

There may be other valid answers given that are outside the provided mark scheme

## Winter 15 P13

Q7 (a) Computer ethics involves a number of different topics.
(i) A student made the following statement on an examination paper:
"It allows a user to have the freedom to run, copy, change and adapt the software and then pass it on to a colleague, friend or family member."
Identify which computer term the student was describing.
(ii) Explain what is meant by computer ethics.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(b) The four statements below refer to firewalls and proxy servers. Study each statement. Tick (9) the appropriate column(s) to indicate whether the statement refers to a firewall and/or a proxy server. [4]

| Statement | Firewall | Proxy <br> server |
| :--- | :--- | :--- |
| Speeds up access of information from a web server by using a <br> cache |  |  |
| Filters all Internet traffic coming into and out from a user's <br> computer, intranet or private network |  |  |
| Helps to prevent malware, including viruses, from entering a <br> user's computer |  |  |
| Keeps a list of undesirable websites and IP addresses |  |  |

+923002724734 /inqilabpatel inqifa6-patel

## Page |103

## (c) Explain three ways of preventing accidental loss or corruption of data.

1
$\qquad$
$\qquad$

2
$\qquad$
$\qquad$
3
$\qquad$
$\qquad$
$\qquad$
Q8) Choose five correct terms from the following list to complete the spaces in the sentences below:

- cypher text • encryption algorithm • encryption key firewall



## Marking Scheme

Q7) (a) (i) Free software/ open source software [1]
(ii) Any three from:

- Set of principles/ laws that regulate the use of computers
- Covers intellectual property rights (e.g. copying of software)
- Privacy issues (e.g. accessing personal information)
- Impact of computers on society (relevant examples can be credited) [3]
(b) 1 mark for each CORRECT row [4]

| Statement | Firewall | Proxy <br> server |
| :--- | :---: | :---: |
| Speeds up access of information from a web server by <br> using a cache |  | $\checkmark$ |
| Filters all Internet traffic coming into and out from a user's <br> computer, intranet or private network | $\checkmark$ | $\checkmark$ |
| Helps so prevent malware, including viruses, from entering <br> a user's computer | $\checkmark$ |  |
| Keeps a list of undesirable websites and IP addresses | $\checkmark$ | $\checkmark$ |

(c) one mark for method + one mark for linked reason (maximum 6 marks)

- back up files.
- ...on a regular basis/ to another device/ to the cloud
- set data to read only.
- ...to prevent accidental editing
- save data on a regular basis..
- ...to prevent loss/ corruption of data in unexpected shutdown/failure
- use correct shut down/ start up procedures.

+923002724734
/inqilabpatel
@inquíab
inqifa6-patel

Page |104

- ...to prevent damage to components/ stored files
- use correct procedures before disconnecting portable storage device
- ...to prevent damage to device/ data corruption
- keep storage devices in a safe place...
- ...away from fire hazards [6]

Q8) symmetric encryption
encryption key
plain text
encryption algorithm
cypher text [5]

## Winter 15 P11)

Q9) (a) Three statements about cookies are shown below.
Study each statement. Tick to show whether the statement is true or false.
[3]

| Statement | True | False |
| :--- | :--- | :--- |
| Cookies can destroy or modify data in a computer without the user's <br> knowledge |  |  |
| Cookies generate website pop-ups |  |  |
| Cookies allow a website to detect whether a viewer has viewed <br> specific web pages |  |  |

Q10) (a) State what is meant by encryption.
$\qquad$
(b) State what is meant by symmetric encryption.
(c) Complete the diagram:


Q11) Identify which five computer terms are being described below.
(a) A system designed to prevent unauthorised access to or from a private network or intranet; it examines all data traffic to and from the network and filters out anything that does not meet certain criteria.
(b) Software that can be used on a trial basis before buying the full version; it often does not include all the features of the full version or has a time limit before it stops working.
(c) A protocol for transmitting private documents via the Internet; it uses two keys to encrypt the data - a public key and a private key.
(d) A standard adopted by the electronic music industry for controlling devices that produce music, such as synthesisers and sound cards.
(e) A device that allows audio signals to be converted into electrical signals which can be interpreted by a computer after being converted into digital signals.

/inqilabpatel
inqifa6-patel

## Page |105

## 2210_0478_s16_qp_11_13

Q12) Some software can be described as free, freeware or shareware.
Tick ( $\checkmark$ ) the appropriate boxes in the table below to show which features apply to these three types of software.

| Software feature | Free | Freeware | Shareware |
| :--- | :--- | :--- | :--- |
| Software source code can be freely accessed and modified <br> as required |  |  |  |
| All the features of the full version of the software are not <br> made available; the full version needs to be purchased first |  |  |  |
| The original software is subject to all copyright laws |  |  |  |
| It is possible to distribute modified versions or copies of the <br> software to friends and family |  |  |  |

Q13)Secure socket layer (SSL) is used in the security of information on Internet websites.
(a) State how it is possible for a user to know that a website is secure by looking at the web address.
$\qquad$
(b) Describe three of the stages a web browser goes through to detect whether a website is secure. 1

2 $\qquad$

3
$\qquad$
$\qquad$
Q14) A bank offers an online service to its customers. The bank has developed a "SafeToUse" system that asks each customer to enter four randomly chosen characters from their password each time they $\log$ in.
The customer selects these four characters from drop-down boxes. For example:

| Please select the | $2^{\text {nd }}$ character | / |
| :---: | :---: | :---: |
|  | $5^{\text {th }}$ character | $\nabla$ |
|  | $6^{\text {th }}$ character | $\nabla$ |
|  | $8^{\text {th }}$ character | $\nabla$ |

(a) (i) Explain why it is more secure to use drop-down boxes rather than entering characters using a keyboard.
$\qquad$
$\qquad$
$\qquad$

## [2]

(ii) Give a reason why the system asks for four characters chosen at random.
(b) Biometrics is an additional form of security.

Page |106
Give two examples of biometrics.
1.

2
.. $\qquad$

Q15) 10 Six security issues and six descriptions are shown below.
Draw a line to link each security issue to its correct description.[5]

URL

Pharming

Phishing

Viruses

## Hacking

## Spyware

## Cookies

Description
illegal access to a computer system without the owner's consent or knowledge
software that gathers information by monitoring key presses on a user's keyboard; the data is sent back to the originator of the software
malicious code installed on the hard drive of a user's computer or on a web server; this code will re-direct the user to a fake website without the user's knowledge
creator of code sends out a legitimate-looking email in the hope of gathering personal and financial information from the recipient; it requires the user to click on the link in the email or attachment
a message given to a web browser by a web server; it is stored in a text file; the message is then sent back to the server each time the browser requests a page from the server
program or code that replicates itself; designed to amend, delete or copy data or files on a user's computer; often causes the computer to crash or run slowly

Page |107

## Marking Scheme

Q12)

| Software feature | Free | Freeware | Shareware |
| :--- | :---: | :---: | :---: |
| Software source code can be freely accessed and modified <br> as required | $\checkmark$ |  |  |
| All the features of the full version of the software are not <br> made available; the full version needs to be purchased first |  |  | $\checkmark$ |
| The original software is subject to all copyright laws |  | $\checkmark$ | $\checkmark$ |
| It is possible to distribute modified versions or copies of the <br> software to friends and family | $\checkmark$ |  |  |

(a) Any one from:

- protocol ends in "s"
- use of padlock [1]
(b) Any three from:
- requests web server to identify itself/view the (SSL) certificate
- receives a copy of the (SSL) certificate, sent from the web server
- checks if SSL certificate is authentic/trustworthy
- sends signal back to web server that the certificate is authentic/trustworthy
- starts to transmit data once connection is established as secure
- if website is not secure browser will display an open padlock/warning message [3]

Q14) (a) (i) Any two from:

- to protect against key logging software/spyware
- can stop key presses being recorded
- can stop key presses being relayed
- drop down boxes cannot be recorded as key presses
- drop down boxes can be placed in different location on the screen each time (to overcome screen capture issues) [2]
(ii) Any one from:
- hacker never finds all characters on the first hack
- makes it more difficult for hackers to find the order of the characters
- hacker needs to hack the system several times to gain the whole password
- shoulder surfing will not give person full password [1]
(b) Any two from:
- fingerprint scanner
- face recognition software
- retina scanner/iris scanner
- voice recognition software [2]


## 2210_0478_s16_qp_12 Q8

Q15 (b) Describe three ethical issues that should be considered when using computers.
1 $\qquad$

2
 $\qquad$
$\qquad$
+923002724734 /inqilabpatel inquifa6-patel

## $\approx$ Compurersuencee with nidilab Patel

Page |108
3
(c) Security of data is very important.

Three security issues are viruses, pharming and spyware.
Explain what is meant by each issue.
Viruses:
$\qquad$

## Pharming:

$\qquad$
$\qquad$

## Spyware:

$\qquad$
$\qquad$
$\qquad$
(d) Describe three tasks carried out by a firewall.

## 2 <br> 2

3
$\qquad$
(b) Any three from:

- That we should follow Copyright laws/intellectual property rights/work should not be stolen/plagiarised
- That we should follow Data Protection laws
- That we should not create or distribute malware//description of malware
- That we should not hack/crack other computers//description of hacking
- That we should protect our own computers against malware/hacking
- That we should consider privacy issues (when using social networking)
- That we consider anonymity issues (when using social networking)
- That we should consider environmental impacts when using computers
- Loss/creation of jobs from use of computers/robotics
- We should follow codes of practice (for creation of code e.g. ACM/IEEE) [3]
(c) 2 marks for each term described


## Viruses:

- program/software/file that replicates (copies) itself
- intends to delete or corrupt files//fill up hard disk space

Pharming:

- malicious code stored on a computer/web server
- redirects user to fake website to steal user data

Spyware:
+923002724734
/inqilabpatel
inqilab-patel
@inqílab

Page |109
e.g. key presses//key logging software

- user activity/key presses can be analysed to find sensitive data e.g. passwords [6]
(d) Any three from:
- examines/monitors traffic to and from a user's computer and a network/Internet
- checks whether incoming and outgoing traffic meets a given set of criteria/rules
- firewall blocks/filters traffic that doesn't meet the criteria/rules
- logs all incoming and outgoing traffic
- can prevent viruses or hackers gaining access
- blocks/filters access to specified IP addresses/websites
- warns users of attempts by software (in their computer) trying to access external data sources (e.g.

Q16 (a) Five statements and three types of software are shown below.
Draw lines to connect each statement with the correct type of software.


## Statement

Users have the freedom to pass on the software to friends and family as they wish.

Users can download this software free of charge, but they cannot modify the source code in any way.

Users are allowed to try out the software for a trial period only before being charged.

Users can study the software source code and modify it, where necessary, to meet their own needs, without breaking copyright laws.

Users can obtain a free trial version of the software, but this often does not contain all the features of the full version.

## Type of software

## -

Page |110
Security threat 2
Description
$\qquad$
$\qquad$
Q18) Explain the differences between freeware and free software.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Marking Scheme

Q18) (a) Any two from:

- a large number of requests are sent to the network/server all at once
- designed to flood a network/server with useless traffic/requests
- the network/server will come to a halt/stop trying to deal with all the traffic/requests
- prevents users from gaining access to a website/server
(b) 1 mark for each security threat and 1 mark for matching description


## Security threat Description

Viruses - software that replicates

- causes loss/corruption of data // computer may "crash"/run slow

Hacking/cracking - illegal/ unauthorised access to a system/data

| Phishing | - a link/attachment sends user to fake website (where personal data may be |
| :--- | :--- |
| Pharming | obtained) |
|  | - malicious code installed on user's hard drive / computer |
|  | - user is redirected to a fake website (where personal data may be obtained) |

Spyware/key logger - send/relay key strokes to a third party
[4]

## Challenging Questions

Challenge 1 Summer 2015 P11)
Draw a line to connect each question to the correct answer. [5] Question

## Answer

What is the denary (base 10) equivalent to the hexadecimal digit $E$ ?

## 8

If $1 \mathrm{~GB}=2^{\mathrm{x}}$ then what is the value of $X$ ?

## 12

How many bits are there in one byte?

If the broadband data download rate is 40 megabits per second, how many seconds will it take to 19 download a 60MB file?

What is the denary (base 10) value of the binary number

00100100 ?

## 30

What hexadecimal value
is obtained when the two
hexadecimal digits C and D
are added together?

## Challenge 2:

Sensors are one type of input device.
For each of the following situations, name a different sensor that could be used.
(i) air conditioning in an office building
(ii) maintaining correct growing conditions in a greenhouse
(iii) detecting an intruder in a building
(b) Sensors are used to monitor seismic activity. At the end of each day, all the data are transmitted to a central computer. This is hundreds of kilometres away. Describe one way of ensuring that the integrity of the data is retained during the transmission stage.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Challenge 3

(a) Give the definition of the terms firewall and authentication. Explain how they can help with the security of data.
Firewall : $\qquad$
$\qquad$
$\qquad$

Authentication:
$\qquad$
$\qquad$
(b) Describe two differences between data integrity and data security.
$\qquad$
$\qquad$
$\qquad$
(c) Data integrity is required at the input stage and also during transfer of the data.
(i) State two ways of maintaining data integrity at the input stage. Use examples to help explain your answer.
$\qquad$
$\qquad$
$\qquad$
(ii) State two ways of maintaining data integrity during data transmission. Use examples to help explain your answer.

## Marking Scheme <br> Firewall

 /inqilabpatelinqifab-patel

Page |113

- sits between the computer or LAN and the InternetWAN and permits or blocks traffic to/from the network
- can be software and/or hardware
- software firewall can make precise decisions about what to allow or block as it can detect illegal attempts by specific software to connect to Internet
- can help to block hacking or viruses reaching a computer

Authentication

- process of determining whether somebody/something is who/what they claim to be
- frequently done through log on passwords/biometrics
- because passwords can be stolen/cracked, digital certification is used
- helps to prevent unauthorised access to data [3]
(b) Describe two differences between data integrity and data security.
(b) one mark for security, one mark for integrity:
- integrity deals with validity of data/freedom from errors/data is reasonable
- security deals with protection of data
- security protects data from illegal access/loss
- integrity deals with making sure data is not corrupted after, for example, being transmitted [2]

Challenge 2(c) Data integrity is required at the input stage and also during transfer of the data.
(i) State two ways of maintaining data integrity at the input stage. Use examples to help explain your answer.
(c) (i) one mark for each way of maintaining data security + one mark for an example/enhancement - validation (to ensure data is reasonable)

- examples include range checks, type checks, length checks, ...
- verification (checks if data input matches original/if transmitted data matches original)
- can use double data entry or visual check/other methods such as parity checks
- doesn't check whether or not data is reasonable [3]
(ii) State two ways of maintaining data integrity during data transmission. Use examples to help explain your answer.
(ii) one mark for each way of maintaining data integrity + one mark for an example/enhancement
- parity checking
- one of the bits is reserved as parity bit
- e.g. 10110110 uses odd parity
- number of 1 s must be odd
- parity is checked at receiver's end
- a change in parity indicates data corruption
- check sum
- adds up bytes in data being sent and sends check sum with the data
- calculation is re-done at receiver's end
- if not the same sum then the data has been corrupted during transmission [3]


## Challenge: 3

(a) Explain how the width of the data bus and system clock speed affect the performance of a computer system.
Width of the data bus
Clock speed [3]
(b) Most computers use Universal Serial Bus (USB) ports to allow the attachment of devices. Describe two benefits of using USB ports.
1
2
(c) The table shows six stages in the von Neumann fetch-execute cycle.

Put the stages into the correct sequence by writing the numbers 1 to 6 in the right hand column.
[6]

| Description of stage | Sequence <br> number |
| :--- | :--- |
| the instruction is copied from the Memory Data Register (MDR) and placed in <br> the Current Instruction Register (CIR) |  |
| the instruction is executed |  |
| the instruction is decoded |  |
| the address contained in the Program Counter (PC) is copied to the Memory <br> Address Register (MAR) |  |
| the value in the Program Counter (PC) is incremented so that it points to the <br> next instruction to be fetched |  |
| the instruction is copied from the memory location contained in the Memory <br> Address Register (MAR) and is placed in the Memory Data Register (MDR) |  |

## Marking Scheme

(a) Explain how the width of the data bus and system clock speed affect the performance of a computer system.

## Width of the data bus

- the width of the data bus determines the number of bits that can be simultaneously transferred
- increasing the width of the data bus increases the number of bits/amount of data that can be moved at one time (or equivalent)
- hence improving processing speed as fewer transfers are needed
- By example: e.g. double the width of the data bus moves $2 x$ data per clock pulse

Clock speed

- determines the number of cycles the CPU can execute per second
- increasing clock speed increases the number of operations/number of fetch-execute cycles that can be carried out per unit of time
- however, there is a limit on clock speed because the heat generated by higher clock speeds cannot be removed fast enough
(b) Most computers use Universal Serial Bus (USB) ports to allow the attachment of devices.

Describe two benefits of using USB ports.
Any two from:

- devices automatically detected and configured when first attached/plug and play
- it is nearly impossible to wrongly connect a device

Page |115

- USB has become an industrial standard
- supported by many operating systems
- USB 3.0 allows full duplex data transfer
- later versions are backwards compatible with earlier USB systems
- allows power to be drawn to charge portable devices
(c) The table shows six stages in the von Neumann fetch-execute cycle.

Put the stages into the correct sequence by writing the numbers 1 to 6 in the right hand column.

| Description of stage | Sequence <br> number |
| :--- | :---: |
| the instruction is copied from the Memory Data Register (MDR) and placed in <br> the Current Instruction Register (CIR) | 3 |
| the instruction is executed | 6 |
| the instruction is decoded | 5 |
| the address contained in the Program Counter (PC) is copied to the Memory <br> Address Register (MAR) | 1 |
| the value in the Program Counter (PC) is incremented so that it points to the <br> next instruction to be fetched | 4 |
| the instruction is copied from the memory location contained in the Memory <br> Address Register (MAR) and is placed in the Memory Data Register (MDR) | 2 |

## Challenge 4

(a) Name and describe three buses used in the von Neumann model.

Bus 1
Description.
Bus 2.
Description.
Bus 3
Description.
(b) The sequence of operations shows, in register transfer notation, the fetch stage of the fetch execute cycle.
1 MAR $\leftarrow \square[P C]$
$2 \mathrm{PC} \leftarrow \square[\mathrm{PC}]+1$
3 MDR $\leftarrow \square[[M A R]]$
4 CIR $\leftarrow \square[M D R]$

- [register] denotes contents of the specified register or memory location
- Step 1 above is read as "the contents of the Program Counter are copied to the Memory Address Register"
(i) Describe what is happening at step 2.
(ii) Describe what is happening at step 3.
(iii) Describe what is happening at step 4.
(c) (i) Explain what is meant by an interrupt.
(ii) Explain the actions of the processor when an interrupt is detected.
+923002724734
/inqilabpatel
inqílab-patel
@inqíab


## Marking Scheme

(a) Name and describe three buses used in the von Neumann model.

- address bus
- lines used to transfer address of memory or input/output location
- unidirectional bus
- data bus
- used to transfer data between the processor and memory/input and output devices
- bidirectional bus
- control bus
- used to transmit control signals
- e.g. read/write/fetch/ ...
- dedicated bus since all timing signals are generated according to control signal [6]
(b) The sequence of operations shows, in register transfer notation, the fetch stage of the fetch
execute cycle.
1 MAR $\leftarrow \square[P C]$
$2 P C \leftarrow \square[P C]+1$
3 MDR $\leftarrow \square[[M A R]]$
4 CIR $\leftarrow \square[M D R]$
- [register] denotes contents of the specified register or memory location
- Step 1 above is read as "the contents of the Program Counter are copied to the Memory Address Register"
(i) Describe what is happening at step 2.
the program counter is incremented
(ii) Describe what is happening at step 3.
the data stored at the address held in MAR is copied into the MDR
(iii) Describe what is happening at step 4. the contents of the Memory Data Register is copied into the Current Instruction Register
(c) (i) Explain what is meant by an interrupt. a signal from a device/program that it requires attention from the processor
(ii) Explain the actions of the processor when an interrupt is detected.
- Processor stores the current instruction into interrupt handler
- Then processor deals with the interrupt
- After servicing the interrupt the process resumes the last task from interrupt handler.


## Challenge 5:

(a) Name the most suitable input or output device for each of the following uses. Give a different device in each case.

| Description of use | Input or output <br> device |
| :--- | :--- |
| input of credit card number into an online form |  |
| selection of an option at an airport information kiosk |  |
| output of a single high-quality photograph |  |
| output of several hundred high-quality leaflets |  |
| input of a hard copy image into a computer |  |

(b) All of the uses in part (a) involve the input or output of data.
(i) Describe two methods of preventing accidental loss of data.

1
(ii) Describe one way of ensuring the security of the data against malicious damage.

## Marking Scheme

Challenge 5: (a) Name the most suitable input or output device for each of the following uses. Give a different device in each case.

| Description of use | Input or output device |
| :--- | :--- |
| input of credit card number into an online form | Keyboard/keypad/number pad |
| selection of an option at an airport information <br> kiosk | touch screen |
| output of a single high-quality photograph | ink jet printer |
| output of several hundred high-quality leaflets | laser printer |
| input of a hard copy image into a computer | scanner |

(b) All of the uses in part (a) involve the input or output of data.
(i) Describe two methods of preventing accidental loss of data.

- frequent (or equivalent) backup EITHER to secondary media/to 3rd party server/cloud/removable devices/continuous backup OR stored remotely
- disk-mirroring strategy/RAID
- UPS (uninterruptable power supply)/backup generator
(ii) Describe one way of ensuring the security of the data against malicious damage.
- protection of data (or equivalent) with passwords/using password and username for logging on include e.g. fingerprint scanning
- encryption
- installation and use of up to date anti-malware/anti-virus
- give different access rights to different users
- use a firewall,
- physical methods/lock doors and use secure entry devices/CCTV

Challenge 6: The incomplete table below shows descriptions and terms relating to malware.
(a) Complete the table with appropriate descriptions and terms.

|  | Description | Term |
| :---: | :---: | :---: |
| A | Unsolicited emails containing advertising material sent to a distribution list. | ...................... |
| B | A standalone piece of malicious software that can reproduce itself automatically. | ..................... |
| C |  | Pharming |
| D | ................................................................................ | Phishing |

/inqilabpatel
inqílab-patel

Page |118
$\square$
(b) For one of the terms, describe:

- a problem that might arise for a user
- a possible solution to the problem

Choose between the terms:
A / B (circle your choice)
Problem
Solution
(c) Explain the following terms:

Encryption $\qquad$
Public key

Challenge 6: The incomplete table below shows descriptions and terms relating to malware.
(a) Complete the table with appropriate descriptions and terms.

|  | Description | Term |
| :--- | :--- | :--- |
| A | Unsolicited emails containing advertising material sent to a <br> distribution list. | Spam |
| B | A standalone piece of malicious software that can <br> reproduce <br> itself automatically. | Virus |
| C | redirect website to fake website by poisoning domain <br> name server, installing code in client computer | Pharmin <br> g |
| D | through legitimate email attempt to obtain somebody's <br> confidential data / install malware | Phishing |

(b) For one of the terms, describe:

- a problem that might arise for a user
- a possible solution to the problem

Choose between the terms: A / B (circle your choice)
Spam
Problem: • user's inbox is filled by large amount of unwanted email
Solution: • user / email server employs filtering software that can divert / delete spam email

## Virus

Problem :• could corrupt user's computer // delete data // consume bandwidth
Solution: • run anti-virus software in the background // not connect to the Internet // keep OS up-todate[2]
(c) Explain the following terms:

Encryption: process of turning plain text into cipher text (meaningless for others) Public key: key widely available that can be used to encrypt message that only owner of private key can decrypt // can be used to decrypt a message thereby confirming originator of message
[2]
+923002724734
18 /inqilabpatel
@inqilab
inqilab-patel

Challenge 7: A system is monitored using sensors. The sensors output binary values corresponding to physical conditions, as shown in the table:

| Parameter | Description of <br> parameter | Binary value | Description of condition |
| :---: | :---: | :---: | :---: |
| $\mathbf{P}$ | oil pressure | 1 | pressure $>=3$ bar |
|  |  | 0 | pressure $<3 \mathrm{bar}$ |
| $\mathbf{T}$ | Temperature | 1 | temperature $>=200^{\circ} \mathrm{C}$ |
|  | $\mathbf{R}$ | 0 | temperature $<200^{\circ} \mathrm{C}$ |
| $\mathbf{~ r o t a t i o n ~}$ |  | rotation $<=1000$ revs per minute |  |
|  |  |  |  |

The outputs of the sensors form the inputs to a logic circuit. The output from the circuit, $X$, is 1 if any of the following three conditions occur:
either
oil pressure $>=3$ bar and temperature $>=200^{\circ} \mathrm{C}$
or oil pressure < 3 bar and rotation > 1000 rpm
or temperature $>=200^{\circ} \mathrm{C}$ and rotation $>1000 \mathrm{rpm}$
(a)Draw a logic circuit to represent the above system.
(b) Complete the truth table for this system.

| $\mathbf{P}$ | $\mathbf{T}$ | $\mathbf{R}$ | Workspace | $\mathbf{X}$ |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 |  |  |
| 0 | 0 | 1 |  |  |
| 0 | 1 | 0 |  |  |
| 0 | 1 | 1 |  |  |
| 1 | 0 | 0 |  |  |
| 1 | 0 | 1 |  |  |
| 1 | 1 | 0 |  |  |
| 1 | 1 | 1 |  |  |

Challenge 7: A system is monitored using sensors. The sensors output binary values corresponding to physical conditions, as shown in the table:

| Parameter | Description of parameter | Binary value | Description of condition |
| :---: | :---: | :---: | :---: |
| P | oil pressure | 1 | pressure >= 3 bar |
|  |  | 0 | pressure < 3 bar |
| T | Temperature | 1 | temperature $>=200^{\circ} \mathrm{C}$ |
|  |  | 0 | temperature < $200^{\circ} \mathrm{C}$ |
| R | rotation | 1 | rotation <= 1000 revs per minute (rpm) |
|  |  | 0 | rotation $>1000$ revs per minute (rpm) |

The outputs of the sensors form the inputs to a logic circuit. The output from the circuit, $X$, is 1 if any of the following three conditions occur:


## Page |120

## either

oil pressure $>=3$ bar and temperature $>=200^{\circ} \mathrm{C}$
or oil pressure < 3 bar and rotation $>1000 \mathrm{rpm}$
or temperature $>=200^{\circ} \mathrm{C}$ and rotation $>1000 \mathrm{rpm}$
(a)Draw a logic circuit to represent the above system.


| P | $T$ | R | Workspace | X |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 |  | 1 |
| 0 | 0 | 1 |  | 0 |
| 0 | 1 | 0 |  | 1 |
| 0 | 1 | 1 |  | 0 |
| 1 | 0 | 0 |  | 0 |
| 1 | 0 | 1 |  | 0 |
| 1 | 1 | 0 |  | 1 |
| 1 | 1 | 1 |  | 1 |

Challenge 8: (a) There are two types of RAM: dynamic RAM (DRAM) and static RAM (SRAM). Five statements about DRAM and SRAM are shown below.
Draw a line to link each statement to the appropriate type of RAM.
Statement
Type of RAM

| requires data to be refreshed periodically in order to retain the <br> data |
| :--- |
| has more complex circuitry |

DRAM
does not need to be refreshed as the circuit holds the data as long as the power supply is on
requires higher power consumption which is significant when used in battery-powered devices $\qquad$
used predominantly in cache memory of processors where speed is important
(b) Describe three differences between RAM and ROM.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(c) DVD-RAM and flash memory are two examples of storage devices. Describe two differences in how they operate.

+923002724734

## Challenge 9:

(a) The table shows four statements about IP addresses.

Tick $(\checkmark)$ to show which of the statements are true.
[2]
Statement
The IP address consists of any number of digits separated by single dots (.)

Each number in an IP address can range from 0 to 255
IP addresses are used to ensure that messages and data reach their correct destinations
Public IP addresses are considered to be more secure than private IP addresses
(b) Consider the URL:
http://cie.org.uk/computerscience.html
(i) Give the meaning of the following parts of the URL.
http
$\qquad$ cie.org.uk
$\qquad$
computerscience.html
$\qquad$
$\qquad$
$\qquad$

## Challenge 9:

(a) The table shows four statements about IP addresses.

Tick $(\sqrt{ })$ to show which of the statements are true.

| Statement | True ( $\sqrt{ }$ ) |
| :--- | :--- |
| $\begin{array}{l}\text { The IP address consists of any number of digits separated bysingle dots } \\ \text { (.) }\end{array}$ |  |
| Each number in an IP address can range from 0 to 255 | $\checkmark$ |
| $\begin{array}{l}\text { IP addresses are used to ensure that messages and data reachtheir } \\ \text { correct destinations }\end{array}$ | $\checkmark$ |
| $\begin{array}{l}\text { Public IP addresses are considered to be more secure than privateIP } \\ \text { addresses }\end{array}$ |  |

(b) Consider the URL:
http://cie.org.uk/computerscience.html
(i) Give the meaning of the following parts of the URL.
http:- enables browser to know what protocol is being used to access information in the domain
cie.org.ukis the domain name
computerscience.htmlweb page / file being viewed

+923002724734 $\boldsymbol{f}$ /inqilabpatel
@inqíab
inqifa6-patel

Page |122
Challenge 10: (a) Three digital sensors A, B and C are used to monitor a process. The outputs from the sensors are used as the inputs to a logic circuit.
A signal, $X$, is output from the logic circuit:

(b) Complete the truth table for the logic circuit described in part (a).

| $A$ | $B$ | $C$ | Workspace | X |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 |  |  |
| 0 | 0 | 1 |  |  |
| 0 | 1 | 0 |  |  |
| 0 | 1 | 1 |  |  |
| 1 | 0 | 0 |  |  |
| 1 | 0 | 1 |  |  |
| 1 | 1 | 0 |  |  |
| 1 | 1 | 1 |  |  |

(c) Write a logic statement that describes the following logic circuit.

$\qquad$
$\qquad$
$\qquad$

Challenge 11: A web page offers a link for users to request another web page. The requested web page contains HTML code and JavaScript code.
Put each statement in the correct sequence by writing the numbers 1 to 5 in the right-hand column.

| Statement | Sequence <br> number |
| :--- | :--- |
| The requested web page is displayed on the client computer |  |
| The user clicks on the hyperlink and the web page is requested from the web <br> server |  |
| The requested web page content is transmitted to the client computer |  |
| The client computer processes the JavaScript code using the web browser <br> software |  |
| The web server locates the requested web page |  |

Challenge 11: A web page offers a link for users to request another web page. The requested web page contains HTML code and JavaScript code.
Put each statement in the correct sequence by writing the numbers 1 to 5 in the right-hand column.

| Statement | Sequence <br> number |
| :--- | :---: |
| The requested web page is displayed on the client computer | $\underline{\mathbf{5}}$ |
| The user clicks on the hyperlink and the web page is requested from the web <br> server | $\underline{\mathbf{1}}$ |
| The requested web page content is transmitted to the client computer | $\underline{\mathbf{3}}$ |
| The client computer processes the JavaScript code using the web browser <br> software | $\underline{\mathbf{4}}$ |
| The web server locates the requested web page | $\underline{\mathbf{2}}$ |

Challenge 12: Computer programs have to evaluate expressions.
Study the sequence of pseudocode statements.
Write down the value assigned to each variable.

$+923002724734$
/inqilabpatel
inqifa6-pate\

Page |124
2 A programmer uses an Integrated Development Environment (IDE) for all program development. Describe what is meant by an IDE.

Challenge 12: Computer programs have to evaluate expressions.
Study the sequence of pseudocode statements.
Write down the value assigned to each variable.

40

(i) Perimeter

## 314.2

(ii) Area .............................................................
(iii) z ... 10 or error as $Z$ has not been declared.
(iv) A ...True.

2 A programmer uses an Integrated Development Environment (IDE) for all program development. Describe what is meant by an IDE.
(Single) software program Features for: program editor/writing/editing translation // interpreter/compiler testing program code // observe outputs 2 points to score

Page |125
Challenge 13: A program design is to be amended. The value input by the user for the ticket type is to be validated. Part of the amended flowchart is shown below.


Write pseudocode to use a pre-condition loop for this validation.
INPUT TicketType
WHILE TicketType<>"E" OR TicketType<>"S"
INPUT TicketType
ENDWHILE

## Or

INPUT TicketType
WHILE NOT (TicketType = 'E') OR (TicketType = 'S') INPUT TicketType
ENDWHILE

Challenge 14 The programmer amends the design to validate the value of player game grade that the user inputs.
The amended part of the flowchart is shown below.


Write the equivalent pseudocode using a pre-condition loop, for this part of the amended flowchart.

```
INPUT PlayerGameGrade
WHILE PlayerGameGrade <> 'A' ORPlayerGameGrade<> 'B' OR
    PlayerGameGrade <> 'C' ORPlayerGameGrade <> 'D')
    OUTPUT "Invalid - Re-enter"
    INPUT PlayerGameGrade
ENDWHILE
INPUT PlayerGameGrade
WHILE NOT(PlayerGameGrade = 'A' ORPlayerGameGrade = 'B'
                        ORPlayerGameGrade = 'C' ORPlayerGameGrade = 'D')
    OUTPUT "Invalid - Re-enter"
    INPUT PlayerGameGrade
ENDWHILE

Challenge 15 A marathon runner records their time for a race in hours, minutes and seconds.
An algorithm is shown below in structured English.
INPUT race time as hours, minutes and seconds
CALCULATE race time in seconds
STORE race time in seconds
OUTPUT race time in seconds
(a) The identifier table needs to show the variables required to write a program for this algorithm.

Complete the table.
\begin{tabular}{|l|l|l|}
\hline Identifier & Data type & Description \\
\hline RaceHours & INTEGER & The hours part of the race time. \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Identifier & Data Type & Description \\
\hline RaceHours & INTEGER & The hours part of the race time \\
\hline RaceMinutes & INTEGER & the minute part of the race time \\
\hline RaceSeconds & INTEGER // REAL & the seconds part of the race time \\
\hline RaceTime & INTEGER // REAL & the race time in seconds \\
\hline
\end{tabular}

Challenge 16 Computer programs have to evaluate expressions.
Study the sequence of pseudocode statements.
Give the value assigned to each variable.
The statement may generate an error. If so, write ERROR.
The \& operator is used to concatenate strings.
DECLARE N1: INTEGER
DECLARE Answer : REAL
DECLARE Found : BOOLEAN
DECLARE IsValid : BOOLEAN
\(\mathrm{N} 1 \leftarrow 3\)
\(\mathrm{N} 2 \leftarrow 9\)
Answer \(\leftarrow(\mathrm{N} 1+\mathrm{N} 2) / 6\)
Answer \(\leftarrow 3^{*}(\mathrm{~N} 1-2)+\mathrm{N} 2 / 2\)
IsValid \(\leftarrow(\mathrm{N} 1>\mathrm{N} 2)\) AND (N2 = 9)
Found \(\leftarrow\) FALSE
IsValid \(\leftarrow\) (N1 > N2 / 2) OR (Found = FALSE)
Answer "1034" \& " + " \& "65"
Give the value assigned to each variable
(i) Answer ............................................................................................................................. [1]
(ii) Answer ........................................................................................................................... [1]
(iii) IsValid ......................................................................................................................... [1]
(iv) IsValid ....................................................................................................................... [1]
(v) Answer .......................................................................................................................... [1]
(i) Answer = 2 [1]
(ii) Answer = 7.5 [1]
(iii) FALSE [1]
(iv) TRUE [1]
(v) ERROR [1]
/inqilabpatel
@inqíab
inquitab-pater

Page | \(\mathbf{1 2 8}\)
Challenge 16 Computer programs have to evaluate expressions.
Study the sequence of pseudocode statements.
Give the value assigned to each variable.
The statement may generate an error. If so, write ERROR.
The \& operator is used to concatenate strings.
\begin{tabular}{|l|}
\hline DECLARE N1 : INTEGER \\
\hline DECLARE N2 : INTEGER \\
\hline DECLARE Answer : REAL \\
\hline DECLARE Found \(:\) BOOLEAN \\
\hline DECLARE IsValid \(:\) BOOLEAN \\
\hline N1 \(\leftarrow 3\) \\
\hline N2 \(\leftarrow 9\) \\
\hline Answer \(\leftarrow(\mathrm{N} 1+\mathrm{N} 2) / 6\) \\
\hline Answer \(\leftarrow 3^{*}(\mathrm{~N} 1-2)+\mathrm{N} 2 / 2\) \\
\hline IsValid \(\leftarrow(\mathrm{N} 1>\mathrm{N} 2)\) AND \((\mathrm{N} 2=9)\) \\
\hline Found \(\leftarrow \mathrm{FALSE}\) \\
\hline IsValid \(\leftarrow(\mathrm{N} 1>\mathrm{N} 2 / 2)\) OR (Found \(=\) FALSE \()\) \\
\hline Answer "1034" \& " + " \& "65" \\
\hline
\end{tabular}

Challenge 17 Show what type of programming construct each statement represents.
Complete the table by putting a tick \((\checkmark)\) in the appropriate column for each item.
\begin{tabular}{|l|l|l|l|l|}
\hline Item & Statement & Selection & Iteration & Assignment \\
\hline \(\mathbf{1}\) & MyScore \(=65\) & & & \\
\hline \(\mathbf{2}\) & FOR IndexVal \(=0\) TO 99 & & & \\
\hline \(\mathbf{3}\) & MyArray[3] \(=\) MID(MyString,3,2) & & & \\
\hline \(\mathbf{4}\) & IF MyScore >= 70 THEN & & & \\
\hline \(\mathbf{5}\) & ENDWHILE & & & \\
\hline \(\mathbf{6}\) & ELSE Message \(=\) "Error" & & & \\
\hline
\end{tabular}

Challenge 17 Show what type of programming construct each statement represents.
Complete the table by putting a tick \((\checkmark)\) in the appropriate column for each item.
\begin{tabular}{|l|l|c|c|c|}
\hline Item & Statement & Selection & Iteration & Assignment \\
\hline \(\mathbf{1}\) & MyScore \(=65\) & & & \(\checkmark\) \\
\hline \(\mathbf{2}\) & FOR IndexVal = 0 TO 99 & & \(\checkmark\) & \\
\hline \(\mathbf{3}\) & MyArray[3] = MID(MyString,3,2) & & & \(\checkmark\) \\
\hline \(\mathbf{4}\) & IF MyScore >= 70 THEN & \(\checkmark\) & & \\
\hline \(\mathbf{5}\) & ENDWHILE & & \(\checkmark\) & \\
\hline \(\mathbf{6}\) & ELSE Message \(=\) "Error" & \(\checkmark\) & & \(\checkmark\) \\
\hline
\end{tabular}

Challenge 18 Show what type of programming construct each statement represents.
Complete the table by putting a tick \((\sqrt{ })\) in the appropriate column for each item.
\begin{tabular}{|l|l|l|l|l|}
\hline Item & Statement & Selection & Iteration & Assignment \\
\hline \(\mathbf{1}\) & WHILE DegF >37.5 & & & \\
\hline \(\mathbf{2}\) & MyName \(=\) "Gordon" & & & \\
\hline \(\mathbf{3}\) & DegF \(=\) INT(DegF) & & & \\
\hline \(\mathbf{4}\) & ENDIF & & & \\
\hline 5 & CASE OF MyFavourite & & & \\
\hline 6 & UNTIL \(x=5\) & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|c|c|c|}
\hline Item & Statement & Selection & Iteration & Assignment \\
\hline \(\mathbf{1}\) & WHILE DegF >37.5 & & \(\checkmark\) & \\
\hline \(\mathbf{2}\) & MyName = "Gordon" & & & \(\checkmark\) \\
\hline \(\mathbf{3}\) & DegF \(=\) INT(DegF) & & & \(\checkmark\) \\
\hline \(\mathbf{4}\) & ENDIF & \(\checkmark\) & & \\
\hline \(\mathbf{5}\) & CASE OF MyFavourite & \(\checkmark\) & & \\
\hline \(\mathbf{6}\) & UNTIL \(x=5\) & & \(\checkmark\) & \\
\hline
\end{tabular}

Challenge 19: Computer systems often use several types of storage. This storage is both primary and secondary.
(a) State a use for each of the storage devices shown below.

RAM

ROM

Hard disk drive

Optical storage device
(b) Another type of storage device is a solid state drive (SSD).

Give four advantages of using an SSD when compared with using a hard disk drive.
1
\(\qquad\)
2

3

4 \(\qquad\)

Challenge 19: (a)
RAM
- stores data/applications/programs software/files/OS currently in use

ROM
- stores BIOS/start-up/files that cannot be altered

Hard disk drive
- stores applications/programs software/user's files //
- stores data/user files/programs when the computer is turned off

Optical storage device
- stores data/or by example - photos/music/files / software that can be transferred between
computers any sensible example
- stores applications to be installed
(b) Any four from: [4]
- lightweight/more compact
/inqilabpatel
inqifab-patel

Page | \(\mathbf{1 3 0}\)
- no moving parts (so more robust)
- don't have to wait for device to "reach operating speed"/no latency time
- lower power consumption
- doesn't produce a lot of noise/heat
- much higher data access speed
- not affected by a magnetic field
- does not need to be defragmented (to maintain high data transfer rate)Faster is not enough.

Challenge 20:Six statements and eight input devices are shown below.
Draw a line to link each statement to the correct input device.

Statement
Device for reading text from a printed document and converting it into a form that can be used in a word processor

Device that reads parallel lines of various widths and spacing

Device that collects data values from the real world

Input Device
Magnetic Ink Character
Reader (MICR)


Magnetic stripe reader

> \begin{tabular}{l}  Optical Character \\ Reader (OCR) \\ \hline \end{tabular}

Digital camera with video capture card

Barcode reader or Barcode scanner
Device that reads the data from a magnetised band on the back of a card or ticket

Device that acquires the images of an intruder entering a building
Device that reads pencil or pen marks in pre-determined positions on a page
/inqilabpatel

Page | \(\mathbf{1 3 1}\)

Device for reading text from a printed
document and converting it into a form that can be used in a word processor

Magnetic ink character reader (MICR)

Device that reads parallel lines of various widths and spacing

Device that collects data values from the real world

Device that reads pencil or pen marks in pre-determined positions on a page

Device that reads the data from a magnetised band on the back of a card or ticket

Device that acquires the images of an intruder entering a building

Digital camera with video capture card

Barcode reader or Barcode scanner
\(\square\)

Optical mark reader (OMR)

Challenge 21:(a) A processor controls a heating system. To do this, it uses:
- a temperature sensor
- a device in which a small electrical input current switches a much larger current for the heater The following steps, when put into the correct sequence, describe how to switch on the heater. Put the steps into the correct sequence using the numbers 1 to 5 .
[4]
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Step } & \begin{tabular}{l} 
Sequence \\
\#
\end{tabular} \\
\hline Sensor reading is sent to the microprocessor & \\
\hline Microprocessor checks sensor reading against stored temperature value & \\
\hline Temperature reading is taken by the analogue sensor & \\
\hline \begin{tabular}{l} 
If the sensor reading is less than the stored value, the microprocessor sends a \\
signal to switch on the heater
\end{tabular} & \\
\hline Sensor reading is converted into a digital value using an ADC & \\
\hline
\end{tabular}
(b) Name a suitable sensor for each of the following applications.

State what the sensor detects in each case.
(i) Intruder detection system

Sensor
Reason for choice
\(\qquad\)
(ii) Switching on a street lamp when it gets dark.

Sensor
Reason for choice
(iii) Counting people entering a building.

Sensor
Reason for choice \(\qquad\)
/inqifabpatel

\section*{Challenge 21}
(a) A processor controls a heating system. To do this, it uses:
- a temperature sensor
- a device in which a small electrical input current switches a much larger current for the heater The following steps, when put into the correct sequence, describe how to switch on the heater. Put the steps into the correct sequence using the numbers 1 to 5 .
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Step } & Sequence \# \\
\hline Sensor reading is sent to the microprocessor & \(\mathbf{3}\) \\
\hline Microprocessor checks sensor reading against stored temperature value & \(\mathbf{4}\) \\
\hline Temperature reading is taken by the analogue sensor & \(\mathbf{1}\) \\
\hline \begin{tabular}{l} 
If the sensor reading is less than the stored value, the microprocessor sends a \\
signal to switch on the heater
\end{tabular} & \(\mathbf{5}\) \\
\hline Sensor reading is converted into a digital value using an ADC & \(\mathbf{2}\) \\
\hline
\end{tabular}
(b) Name a suitable sensor for each of the following applications.

State what the sensor detects in each case.
(i) Intruder detection system

Sensor Reason
microphone can detect sound of footsteps, breaking glass, .... [2]
acoustic can detect sound of footsteps, breaking glass,
infra-red detects movement (broken beam) or heat change
pressure detects weight of person entering building
magnetic detects if a door / window has been opened
(ii) Switching on a street lamp when it gets dark.

Sensor .Light
Reason for choice detects level of ambient light (not "when it gets dark")
(iii) Counting people entering a building.

Sensor Reason for choice
proximity detects movement
infra-red each time person breaks beam
pressure each time person steps on pressure pad

\section*{Challenge 22:}

The ISP advertises a download speed of \(80 \mathrm{Mbits} /\) second.
(i) State the number of Mbytes/second this is equivalent to.
(ii) Calculate the time taken to download an 80 Mbyte file.

The business complains to the ISP that the actual download speed is only \(0.8 \mathrm{Mbits} /\) second. (iii) Calculate the time taken to download the same 80 Mbyte file.
(iv) Suggest one reason why the download speed is lower than advertised.

\section*{Marking Scheme}
(i) 10 [1]
(ii) 8 seconds [1]


(iii) 800 seconds [1]
(iv) Any one from: [1]
- over-capacity on network lines
- computer virus (sending out spurious messages)
- cabling/modem/filter fault
- connection uses copper cable which is a distance from the main telephone switch

\section*{Challenge 23:}

For each circuit below, state the equivalent single logic gate. Circuit 1


Circuit 1
Circuit 2
Marking Scheme
Circuit 1 - NOR gate [2]
Circuit 2 - NAND gate

\section*{Challenge 24}

An airport car park is made up of 5 rows, each with 8 bays. When a car enters the car park, a computer system captures its registration plate (number plate) data. The computer system is able to determine the row and bay in which the car is parked.
(a) Outline a suitable method for capturing the registration data of each car.
\(\qquad\)
\(\qquad\)
(b) When a customer wants to leave the car park with their car, they enter their registration plate data at a ticket machine.
The machine calculates and displays the parking fee and the location of the car (for example row 5 , bay 4).
(i) Name a suitable device to enter the car registration and display the location of the car.
(ii) Describe how the computer system can calculate the parking fee.
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Marking Scheme}
(a) [2]
- use of digital video or digital still camera

/inqilabpatel in

Page | \(\mathbf{1 3 5}\)
- use of optical character recognition (software)
- compare the symbols with a library of characters.
(b) (i) touchscreen [1]
(ii) Any two from: [2]
- on entry to car park, date and time stored (e.g. value \(X\) )
- on paying the fee, new date and time stored (e.g. value \(Y\) )
- computer calculates ( \(\mathrm{Y}-\mathrm{X}\) )
- and multiplies number of hours by car park tariff

\section*{Challenge 25:}

A student wrote the following five statements on a computing exam paper.
Explain why each statement is incorrect.
(i) "Backing up data on a pen drive always allows a user to recover data in the event of data loss caused by a virus."
\(\qquad\)
\(\qquad\)
\(\qquad\)
(ii) "A stack data structure operates on the first-in, first-out principle and is controlled by two pointers."
\(\qquad\)
\(\qquad\)
(iii) "The two bytes 01001100 and 01101110 both have even parity since their denary values, 76 and 110, are even."
\(\qquad\)
\(\qquad\)

\section*{[2]}
(iv) "Broadband is a method of communication which is digital in nature; it uses a single channel that uses the entire bandwidth of the medium."
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Marking Scheme}

Challenge 25:A student wrote the following five statements on a computing exam paper.
Explain why each statement is incorrect.
(i) "Backing up data on a pen drive always allows a user to recover data in the event of data loss caused by a virus."
- backed up data/files may already have a virus
- so recovery procedure may re-infect computer
(ii) "A stack data structure operates on the first-in, first-out principle and is controlled by two pointers."
(iii) Any two from: [2]
- a stack operates on 'first-in, last-out'
- a stack requires only one pointer
- this is a description of a queue
/inqilabpatel
in
@inqílab
inqilab-pater
(iii) "The two bytes 01001100 and 01101110 both have even parity since their denary values, 76 and 110, are even."
(iii) Any two from: [2]
- both binary numbers have odd number of 1 s (and 0s)
- so they must both have odd parity
- even / odd (denary) values have no bearing on the parity
(iv) "Broadband is a method of communication which is digital in nature; it uses a single channel that uses the entire bandwidth of the medium."
(iv) Any two from: [2]
- broadband sends data as analogue
- each transmission is assigned only a portion of the bandwidth
- allowing multiple transmissions at the same time across the media
- description given is that of baseband [2]
(v) Any two from: [2]
- ROM is read only
- buffers use RAM memory
- buffer contents always changing / buffers store data temporarily
/inqilabpatel
in

\section*{PATEL}
/inqilabpatel
in
inqialab patel inqilab-pater

Web ruknudatin.com```


[^0]:    - poor

[^1]:    (ii) Name and describe another measure that the bank could introduce to improve the security of their website.

