

LINEAR LAW

CHAPTER 2 : LINEAR LAW

Page
Contents
3.0 CONCEPT MAP 2
3.1 UNDERSTAND AND USE THE CONCEPT OF LINES OF BEST FIT
3.1.1 Draw lines of best fit by inspection of given data Exercises 1 3
3.1.2 Write equations for lines of best fit Exercises 2 4
3.1.3 Determine values of variables from 5
a) lines of best fit
b) equations of lines of best fit

$$
\text { Exercises } 3
$$6

3.2 APPLY LINEAR LAW TO NON- LINEAR RELATIONS 7
3.2.1 Reduce non-linear relations to linear form 7
Exercises 4
3.2.2 Determine values of constants of non-lineas relations given
Exercises 5
3.2.3 Steps to plot a straight line 10
Exercises 6
3.3 SPM Questions 17
3.4 Assessment test 27
3.5 Answers 30

CONCEPT MAP
CHAPTER 2: LINEAR LAW

3.1 UNDERSTAND AND USE THE CONCEPT OF LINES OF BEST FIT

THE CONCEPT OF LINES OF BEST FIT.

The properties of the line of best fit.

- The straight line is drawn such away that it passes through as many points as possible.
- The number of points that do not lie on the straight line drawn should be more or less the same both sides of the straight line.

Example.
Draw the line of best fit for the given graph below.

1. Draw the line of best fit for the following diagrams.

Exercises 1

3.1.2 Write equations for lines of best fit

Exercises 2

3.1.3 Determine values of variables from:

a) lines of best fit

Example 1

Gradient $=\frac{4-2}{2-0}=1$
Therefore, $\frac{k-4}{7-2}=1$
. $\mathrm{k}-2=5$
. $\mathrm{k}=7$
b) Equations of lines of best fit

Example 1

The straight line also passes through the point $(3, k)$

Another equation that can be formed is

$$
\begin{aligned}
& . k=3(3)+4 \\
& . k=9+4=13
\end{aligned}
$$

Exercises 3

a) lines of best fit

3.2 APPLY LINEAR LAW TO NON- LINEAR RELATIONS

3.2.1 Reduce non- linear relations to linear form

$$
\mathbf{Y}=\mathbf{m X}+\mathbf{c}
$$

Example 1
$\mathrm{y}=\mathrm{ax}+\frac{x^{2}}{b}$
Non- linear
$\frac{y}{x}=\frac{a x}{x}+\frac{x^{2}}{x b}-$ Divided by x

Example 1

a) $\mathrm{y}=\mathrm{px}^{\mathrm{q}} \longleftarrow$| Non- linear |
| :--- |
| $\log _{10} \mathrm{y}=\log _{10}\left(\mathrm{px}^{\mathrm{q}}\right) \longleftarrow \begin{array}{l}\text { Take log of } \\ \text { Both siders }\end{array}$ | 共

$\log _{10} y=\log _{10} p+\log _{10} \mathrm{X}^{\mathrm{q}}$

Exercises 4

Equation	Linear form	Y	X	m	c
a) $\mathrm{y}^{2}=\mathrm{ax}+\mathrm{b}$					
b) $\mathrm{y}=\mathrm{ax}^{2}+\mathrm{bx}$					
c) $\frac{a}{y}=\frac{b}{x}+1$					
d) $\mathrm{y}^{2}=5 \mathrm{x}^{2}+3 \mathrm{x}$					
e) $\mathrm{y}=3 \sqrt{x}+\frac{5}{\sqrt{x}}$					
f $\mathrm{y}=\mathrm{ab}^{\mathrm{x}}$					
g) $\mathrm{y}=\frac{4}{a^{2}}(\mathrm{x}+\mathrm{b})^{2}$					

3.2.4 Determine values of constants of non-linear relations given

Exercises 5

The above figure shows part of a straight line graph drawn to represent the equation

$$
\cdot x y=a x^{2}+b
$$

Find the value of a and b

Gradient, $\mathrm{a}=\frac{6-2}{11-1}$

$$
A=\frac{2}{5}
$$

Therefore, $x y=\frac{2}{5} x^{2}+b$
Another equation that can be formed is

$$
\begin{aligned}
& .(1)(2)=\frac{2}{5}(1)^{2}+\mathrm{b} \\
& \mathrm{~b},=2-\frac{2}{5}=\frac{8}{5}
\end{aligned}
$$

Hence $\mathrm{a}=\frac{2}{5} \quad, \mathrm{~b}=\frac{8}{5}$
a) $\frac{y}{x}$

The above figure shows part of a straight line graph drawn to represent the equation
. $y=a x^{2}+b x$
Find the value of a and b,

b) The above figure shows part of a straight line graph drawn to represent the equation $\text { of } y=a x^{b}$ Find the value of a and b,	c) The above figure shows part of a straight line graph drawn to represent the equation $\text { .of } x y=a+b x$ Find the value of a and b,

3.3 STEPS TO PLOT A STRAIGHT LINE

3.3.1. Using a graph paper.

QUESTIONS

X	2	3	4	5	6
Y	2	9	20	35	54

The above table shows the experimental values of two variables, x and y . It is know that x and y are related by the equation

$$
y=p x^{2}+q x
$$

a) Draw the line of best fit for $\frac{y}{x}$ against x
b) From your graph, find,
i) the initial velocity
ii) the acceleration

SOLUTION

STEP 4

From the graph, find m and c

Gradient , $\mathrm{m}=\frac{9-1}{6-2}=2$
Construct a right-angled triangle,
So that two vertices are on the line of best fit, calculate the gradient, m

$$
\text { Y- intercept }=\mathrm{c} .=-3 \quad \begin{aligned}
& \text { Determine the Y-intercept, } \mathrm{c} \\
& \text {.from the straight line graph }
\end{aligned}
$$

Exercises 6

1. The table below shows some experimental data of two related variable x and y It is know that x and y are related by an equation in the form $y=a x+b x^{2}$, where. a and b are constants

.x	1	2	3	4	5	6	7
. y	7	16	24	24	16	0	-24

a) Draw the straight line graph of $\frac{y}{x}$ against x
b) Hence, use the graph to find the values of a and b
http://sahatmozac.blogspot.com

httpo//madhhmarqua.blosspotcom
2. The table below shows some experimental data of two related variable x and y

.x	0	2	4	6	8	10
y	1.67	1.9	2.21	2.41	2.65	2.79

It is known that x and y are related by an equation in the form $. \mathrm{y}=\frac{a x}{y}+\frac{b}{y}$, where a and b are constants.
a) Draw the straight line graph y^{2} against x
b) Hence, use the graph to find the values of a and b
http://sahatmozac.blogspot.com

-							
-							
-							
$\underline{-1}$							
-							
π							
-							
-							
$\sqrt{3}$							

hutpo//madilhmwarge.blogspotcom

4.0 SPM QUESTIONS

1. SPM 2003(paper 1, question no 10)

x and y are related by equation $\mathrm{y}=\mathrm{px}^{2}+\mathrm{qx}$, where p and q are constants. A straight line is obtained by plotting $\frac{y}{x}$ against x , as show in Diagram below

Calculate the values af p and q .

2. SPM 2004(paper 1, question no 13)

Diagram below shows a straight line graph of $\frac{y}{x}$ against x

Gigen that $y=6 x-x^{2}$, calculate the value of k and of h

3. SPM 2005(paper 1, question no 13)

The variable x and y are related by the equation $\mathrm{y}=\mathrm{kx}^{4}$ where k is a constant.
a) Convert the equation $y=k x^{4}$ to linear form
b) Diagram below shows the straight line obtained by plotting $\log _{10} \mathrm{y}$ against $\log _{10} \mathrm{X}$

Find the value of i) $\log _{10} \mathrm{k}$
ii) h .

4. SPM 2003(paper 2, question no 7)

Table 1 shows the values of two variables, x and y, obtained from on experiment. It is known that x and y are related by the equation $\mathrm{y}=\mathrm{pk}^{x^{2}}$, where p and k are constants.

x	1.5	2.0	2.5	3.0	3.5	4.0
y	1.59	1.86	2.40	3.17	4.36	6.76

(a) Plot $\log y$ against x^{2}.

Hence, draw the line of best fit
(b) Use the graph in (a) to find value of
(i) p
(ii) k
http://sahatmozac.blogspot.com

							,					
							,					

hutppo//madilhmmesec.blogspotcom

5. SPM 2004(paper 2, question no 7)

Table 1 shows the values of two variables, x and y, obtained from on experiment.
Variables x and y are related by the equation $\mathrm{y}=\mathrm{pk}^{\mathrm{x}}$, where p and k are constants.

x	2	4	6	8	10	12
y	3.16	5.50	9.12	16.22	28.84	46.77

(a) Plot $\log _{10} y$ against x by using scala of 2 cm to 2 units on the x -axis and 2 cm to 0.2 unit on the $\log _{10}$-axis.
Hence, draw the line of best fit
(b) Use the graph in (a) to find value of
(i) p
(ii) k
http://sahatmozac.blogspot.com

,			-				,					
							,					
							-					
							,					

hattpo//mathhmozege.blogspotcom

6. SPM 2005(paper 2, question no 7)

Table 1 shows the values of two variables, x and y, obtained from on experiment.
The variables x and y are related by the equation $\mathrm{y}=\mathrm{px}+\frac{r}{p x}$, where p and r are constants.

x	1.0	2.0	3.0	4.0	5.0	5.5
y	5.5	4.7	5.0	6.5	7.7	8.4

(b) Plot xy against x^{2} by using scala of 2 cm to 5 units on both axes. Hence, draw the line of best fit
(b) Use the graph in (a) to find value of
(i) p
(ii) r
http://sahatmozac.blogspot.com

httpo//madthsmozege.blosspotcom

5.0 ASSESSMENT TEST

The above figure shows part of a straight-line graph drawn to represent the equation $y=\frac{6}{x}-\frac{1}{2}$ Find the value of h and of k
3. The table below shows some experimental data of two related variable x and y

X	1	2	3	4	5
Y	-1.5	9	43.5	114	232.5

It is know that x and y are related by an equation in the from $. y=a x^{3}-b x$, where a and b are constants.
a) Change the equation to the linear form and hence draw the straight line graph for values of x and y
b) From your graph, I).determine the values of a and b II).find the value of y when $x=3.5$
http://sahatmozac.blogspot.com

hattpo//mathbmosese.blogspotcom

6.0 ANSWERS

Exercises 2

a) $y=-x+9$
b) $y=3 x-3$
c) $y=-x+7$
d) $y=2 x-8$

Exercises 4

	\mathbf{Y}	\mathbf{X}	\mathbf{m}	\mathbf{c}
a)	$\cdot \mathrm{y}^{2}$	x	a	b
b)	$\frac{y}{x}$	x	a	b

C) $\frac{1}{y} \frac{1}{x}$ $\frac{b}{a} \quad \frac{1}{a}$
d) $\frac{y^{2}}{x} \quad 5 \quad 3$
e) $\begin{array}{llll}y \sqrt{x} & x & 3 & 5\end{array}$
f) $\lg y \quad x \quad \lg b \quad \lg a$
g) $\sqrt{y} \times \quad \frac{2}{a} \frac{2 b}{a}$
b

Exercises 3

a)
i) $k=5$
b) i) $k=3$
ii) $k=1$
ii) $\mathrm{k}=3$
iii) $k=5$
iii) $k=6$

Exercises 5

a) $\mathrm{a}=1, \mathrm{~b}=2$
b) $\mathrm{a}=11, \mathrm{~b}=8$
c) $\mathrm{a}=3, \mathrm{~b}=3$

Exercises 5

1) $\mathrm{a}=-1, \mathrm{~b}=10$
2) $\mathrm{a}=0.5, \mathrm{~b}=2.8$

SPM Questions

1) $p=-2, q=13$
2) $\mathrm{h}=3, \mathrm{k}=4$
3) a) $\lg y=4 \lg x+\lg k$
b) $\mathrm{k}=100, \mathrm{~h}=11$
4) $\mathrm{p}=1.259, \mathrm{k}=1.109$
5) $\mathrm{p}=1.82, \mathrm{k}=1.307$
6) $\mathrm{P}=1.37, \mathrm{r}=5.48$
7) $\mathrm{h}=6, \mathrm{k}=2$

Assessment test

2) a) $\frac{y}{x}=a x^{2}-\mathrm{b}$
b) i. $\mathrm{a}=2, \mathrm{~b}=3.6$
ii. $y=73.5$
