The City School
 O-Level Syllabus Break Up

Class: 9 Sept. 14 to May 15

Note: The total number of active teaching weeks for AY 2014-15 is $\mathbf{3 0}$ (excluding revision and examination weeks):

- First term: 14 weeks
- Second term: 16 weeks
- It is highly recommended that teachers consult the CIE Physics (5054) Syllabus on regular basis to avoid any problem in implementing the curriculum
- Following objectives have been prepared carefully in order to facilitate the subject teachers. It is highly recommended to read through these objectives and find out the connections. Any query is welcome.

Subject:	Physics	CIE Code:

Section 1: General Physics				
Chapter		Topic	Week	Learning Outcomes
	No:			
Physical Quantities, Units and Measurements	0.0	Introduction to Physics Cambridge Physics CIE Papers - Curriculum Topics - Brief of studying techniques	1	Candidates should be able to: - Define physical quantity - Enlist the base quantities with their base units and symbols and know that these are seven - Explain derived units with examples (d) Describe how to measure a variety of lengths with appropriate accuracy using tapes,

	1.2	Measurement Techniques	2
	1.3	Units and Symbols	3

rules, micrometers, and calipers using a Vernier as necessary.
(e) Describe how to measure a variety of time intervals using clocks and stopwatches.
(f) Recognize and use the conventions and symbols contained in 'Signs, Symbols and Systematics',

- Use metre rule; tape measure; vernier calipers and micrometer screw gauge to measure the length
- use digital as well as analogue stopwatch to measure time accurately and precisely
- use both top pan balance and electronic balance to measure mass

Section 2: Newtonian Mechanics

Chapter	Topic		Week	Learning Outcomes
	No:			
	1.1	Scalar and Vectors	4	(a)define the terms scalar and vector (c) List the vectors and scalars from distance, displacement, length, speed, velocity, time, acceleration, mass and force. (also classify the following into vectors and scalars, latter on Energy; work; moments; time; density; pressure etc.) (b) Determine the resultant of two vectors by a graphical method. (learn the head to tail rule/ parallelogram method for vector addition using scale diagrams) in O-Level students are required to add 2 vectors)
Kinematics	2.1	Speed, velocity and acceleration	5	(a) State what is meant by speed and velocity. (b) Calculate average speed using distance travelled/time taken. (c) State what is meant by uniform acceleration and calculate the value of an acceleration using change in velocity/time taken. (d) Discuss non-uniform acceleration. (e) *plot and *interpret speed-time and distance-time graphs.
	2.2	Graphical analysis of motion	6	(f) *recognize from the shape of a speed-time graph when a body is (1) at rest, (2) moving with uniform speed, (3) moving with uniform acceleration, (4) Moving with non-uniform acceleration. (g) Calculate the area under a speed-time graph to determine the distance travelled for

	2.3	Free-Fall	7 8	motion with uniform speed or uniform acceleration. (h) State that the acceleration of free-fall for a body near to the Earth is constant and is approximately $10 \mathrm{~m} / \mathrm{s}^{2}$. (i) Describe qualitatively the motion of bodies with constant weight falling with and without air resistance (including reference to terminal velocity).
Section 2: Newtonian Mechanics				
Chapter		Topic	Week	Learning Outcomes
	No:			
Dynamics	3.1	Balanced and unbalanced forces	9	(a) State Newton's third law. (b) Describe the effect of balanced and unbalanced forces on a body. (c) Describe the ways in which a force may change the motion of a body. (d) Do calculations using the equation force $=$ mass \times acceleration. (e) Explain the effects of friction on the motion of a body. (f) Discuss the effect of friction on the motion of a vehicle in the context of tyre surface, road conditions (including skidding), braking force, braking distance, thinking distance and stopping distance. (g) Describe qualitatively motion in a circular path due to a constant perpendicular force, including electrostatic forces on an electron in an atom and gravitational forces on a satellite. ($F=m v^{2} / r$ is not required.) (h) Discuss how ideas of circular motion are related to the motion of planets in the solar system.
	3.2	Friction	10	
	3.3	Circular motion	11	
Section 2: Newtonian Mechanics				
Chapter		Topic	Week	Learning Outcomes
	No:			
Mass, Weight and Density	4.1	Mass and weight	12	(a) State that mass is a measure of the amount of substance in a body. (b) State that the mass of a body resists change from its state of rest or motion. (c) State that a gravitational field is a region in which a mass experiences a force due to gravitational attraction. (d) Calculate weight from the equation weight $=$ mass \times gravitational field strength. (e) Explain that weights, and therefore masses, may be compared using a balance. (f) Describe how to measure mass and weight by using appropriate balances.
	4.2	Gravitational fields	13	

	4.3 Revis	Density Mid-Year Examination Winter Break	$\begin{gathered} 14 \\ \hline 15,16 \end{gathered}$	(g) Describe how to use a measuring cylinder to measure the volume of a liquid or solid. (h) Describe how to determine the density of a liquid, of a regularly shaped solid and of an irregularly shaped solid which sinks in water (volume by displacement). (i) Make calculations using the formula density $=$ mass/volume.
Section 2: Newtonian Mechanics				
Chapter		Topic	Week	Learning Outcomes
Turning Effect of Forces	5.1 5.2 5.3	Moments Centre of Mass Stability	1 2 3	(a) Describe the moment of a force in terms of its turning effect and relate this to everyday examples. (b) State the principle of moments for a body in equilibrium. (c) Make calculations using moment of a force $=$ force \times perpendicular distance from the pivot and the principle of moments. (d) Describe how to verify the principle of moments. (e) Describe how to determine the position of the centre of mass of a plane lamina. (f) Describe qualitatively the effect of the position of the centre of mass on the stability of simple objects.
Section 2: Newtonian Mechanics				
Chapter	No:	Topic	Week	Learning Outcomes

Deformation	6.1	Elastic Deformation	4	(a) State that a force may produce a change in size and shape of a body. (b) *plot, draw and interpret extension-load graphs for an elastic solid and describe the associated experimental procedure. (c) *Recognise the significance of the term "limit of proportionality" for an elastic solid. (d) Calculate extensions for an elastic solid using proportionality.
Section 2: Newtonian Mechanics				
Chapter		Topic	Week	Learning Outcomes
	No:			
Pressure	7.1 7.2	Pressure Pressure Changes	5 6, 7	(a) Define the term pressure in terms of force and area, and do calculations using the equation pressure = force/area. (b) Explain how pressure varies with force and area in the context of everyday examples. (c) Describe how the height of a liquid column may be used to measure the atmospheric pressure. (d) Explain quantitatively how the pressure beneath a liquid surface changes with depth and density of the liquid in appropriate examples. (e) Do calculations using the equation for hydrostatic pressure $p=\rho g h$. (f) Describe the use of a manometer in the measurement of pressure difference. (g) Describe and explain the transmission of pressure in hydraulic systems with particular reference to the hydraulic press and hydraulic brakes on vehicles. (h) Describe how a change in volume of a fixed mass of gas at constant temperature is caused by a change in pressure applied to the gas. (i) Do calculations using $p_{1} V_{1}=p_{2} V_{2}$.
Section 3: Energy and Thermal Physics				
Chapter	No:	Topic	Week	Learning Outcomes

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

