

Logo
PROGRAMMING
WITH MSW Logo

Computer Programming Fundamentals

N V Fitton
Northern Virginia Community College

vfitton@nvcc.edu
www.nvcc.edu/home/vfitton

MSW Logo comes from www.softronix.com/logo.html

Why learn Logo?

* because it’s fun

* because it makes us want to think clearly

* because it's real computer science

Logo is easy to learn, as programming languages go, yet it also has enough depth to do
virtually anything that can be done in any computer language. There is way more to it
than I can show you or tell you, even if we took an entire semester.

I will be happy to help you, and you can get much more help by helping yourself:

* There is a very extensive help system built into the Logo interpreter.

* There are web sites galore, many with program examples.

* My own web site offers code for things not included here.

 www.nvcc.edu/home/vfitton/logo

 Contents

 Programming fundamentals

 1: Sequence 2

 2: Repetition 4

 3: Subprograms 7

 4: Variables 8

 5: Decision-making 9

 Strings 11

 Recursive procedures 12

 Turtle geometry 13

 Color in Logo 14

 Using code from other people's programs 17

 Saving your pictures and programs 18

 References 20

page 1

Logo programming

If Logo is not already on your computer, you can get it for free from its makers at
 www.softronix.com/mswlogo.html

The installation process puts a Logo icon (as on the cover of this document) on your
computer desktop.

Here's the MSW Logo screen in two parts:
 drawing window above, with triangle-shaped TURTLE in center

Commander window below

Write commands in command line, i.e., text box at bottom of Commander window.

Press Enter or click Execute to run command written there.

It's OK to write and run more than one command on line at a time.

Command history appears in gray box.
 Click a line in the history to make it jump to the command line,
 then make changes (or not) then press Enter or click Execute.

page 2

BASICS
Don't forget spaces between words!

 forward 50 or
 or
 fd 50

go forward 50 steps

 right 90 or
 or
 rt 90

right turn 90 degrees

 fd 100 rt 90 fd 100 rt 90

 several steps on command line
 are OK

makes two sides of a square

left 30 or lt 30 left turn 30 degrees

back 100 or bk 100 go backward 100 steps

clearscreen or cs erases all drawings and sets turtle at center
 useful at *beginning* of multi-step commands!

PROGRAMMING FUNDAMENTAL 1: Sequence

You have already experienced this one:

Computers do commands in sequence.

When you're designing a Logo drawing, think of the steps in the order that the
computer should do them.

Try to map out all the steps in advance, then enter them at the command line.
Find out how accurate your thinking is!

The computer is your faithful servant: it will do exactly what you tell it to do.
(And that's all it will do.)

Can you draw these?

page 3

BASICALLY HANDY

clearscreen or cs erases all drawings and sets turtle at center
 useful at *beginning* of multi-step commands!

penup or pu pick pen up,
 so you can move turtle without leaving tracks

pendown or pd put pen down

hideturtle or ht hides the turtle so you can admire your drawing

showturtle or st shows the turtle so you can see what you're doing

setpensize [3 3] makes pen larger, easier to see!
 default pen size is [1 1]

label [whatever] writes whatever at cursor location
text goes in direction that turtle is pointing

wait 20 put this between commands to slow turtle down
so you can see what it's doing, for example:
 fd 100 rt 90 wait 20 fd 100

page 4

PROGRAMMING FUNDAMENTAL 2: Repetition

You already have experience with this one, too:

We often repeat a sequence of commands.

Many of the things that computer programs do, they do over and over. Just about
every programming system has a way of doing this repetition, or iteration, as computer
scientists call it. We tell Logo, for example:

 repeat 4 [fd 100 rt 90]

 or
 repeat 4 [fd 100 rt 90 wait 20]

to save ourselves some typing in making a square.

The general form is:

 repeat number [commands]

We must use the keyword repeat followed by a number and then a sequence of

commands in [square brackets].

Often we have repeat within repeat. (This is called nesting.) What does this do?
Think about it, then try it:

 repeat 4 [repeat 4 [fd 100 rt 90] rt 90]

How about this? How is it different?

 repeat 8 [repeat 4 [fd 100 rt 90] rt 45]

page 5

All of these drawings use the repeat command.
The burst shape at the center used the penup and pendown commands.
In between the drawings, I picked up the pen and moved the turtle.

page 6

Drawings made using repeat [] or repeat [repeat []]

page 7

PROGRAMMING FUNDAMENTAL 3: Subprograms

For convenience and concision, we can add a new command to Logo's language.

A subprogram is a named sequence of steps for another program to execute.

Other names for subprograms are procedures and functions.

In Logo, you tell the computer how to do something — for example,

 to square

 repeat 4 [fd 100 rt 90]

 end

Once you have described your procedure to Logo, you can enter its name on the
command line just as you would any of the built-in things Logo knows how to do.
In this case, you would say on the command line,

 square

and Logo looks up your commands for doing a square.

Click the button that says Edall (for edit all) to bring up Logo's built-in editor.

(If your Logo doesn't have an Edall button, write edall on the command line.)
Here is the required structure of the subprogram:

 to procedurename

 steps of your procedure here

 end

Your procedure or subprogram must start with the word to, then a name you make

up. Then come all the same steps you would write on the command line. Your

procedure must end with the word end.

Can one of your subprogram's steps be another subprogram? Yes!

Think: what will Logo do with this?

 to flower

 repeat 12 [square rt 30]

 end

page 8

PROGRAMMING FUNDAMENTAL 4: Variables

We use the same procedure on different values, or variables.

We don't want every square to be the same size — we want variety. In Logo, we
create variables whose values we can change.

We'll use the same square procedure with a small change:

 to square :n

 repeat 4 [fd :n rt 90]

 end

We give Logo a replacement value for :n on the command line.

 square 50

 square 75

 square 100

Logo puts our number wherever the variable :n appears. You can call the variable a

short abstract name like :n or :x or a longer, more meaningful one, like :length

— whichever you prefer, but don't forget the colon : and don't put space between the
colon and the variable name.

A procedure can be used with more than one variable. Here's a challenge: Write a
subprogram that makes any regular polygon — a triangle, square, pentagon, hexagon,
— and makes it any size. Your procedure might start like this:

 to polygon :sides :length

To write this subprogram, you must figure out in advance what you will do with both

variables. What to do with :length is easier. What you will do with :sides has to

do with the fact that a complete revolution is a turn of 360 degrees. You'll need a little
arithmetic along with geometry. Use symbols + and – to add and subtract and * and /
to multiply and divide.

You can draw a reasonable facsimile of a circle with your polygon procedure. How?

page 9

PROGRAMMING FUNDAMENTAL 5: Decision-making

A program needs to be able to change course depending on the situation.

Decision-making and variables go together. Here, for example, is a framework for
drawing a spiral. It has a loop, a variation on the repetition shown earlier, and the
body of the loop is for you to fill in.

 to spiral

 make "n 1

 while [:n < 20] [

 ; what goes here??

 make "n :n + 1

]

 end

The code above shows several new features of the syntax of MSW Logo.

We set a variable to a new value by saying make, then the variable's name

preceded by a double quote " rather than a colon :

make "n 1

We use a variable, though, with a colon : in front of its name.

while [:n < 20]

The code bracketed after while [condition] is executed while the condition is

true. When it's no longer true, because (in this case) the value of :n grows greater

than 20, the code following the bracket is executed.

This code has a comment, a reminder or notice for human readers, which begins with
a semicolon ; Anything on the same line following the semicolon is ignored by Logo,
but may be very helpful for our understanding.

page 10

Here's a funny bit of code for something called a random walk.

to randomwalk

repeat 100 [
 make "r random 3
 if :r = 0 [fd 20]
 if :r = 1 [rt 90 fd 20]
 if :r = 2 [lt 90 fd 20]
]

end

This code shows if statements, that have code executed only when a given

condition is true.

It also shows a Logo built-in that generates random numbers. The statement

random 3 produces a 0, 1, or 2. The procedure then decides which way to go

"at random." Can a random walk through the business pages produce results as
good as a stockbroker's?

The statement random 6 produces a number chosen from 0, 1, 2, 3, 4, 5. So

what do you say to make Logo roll dice?

Sample output of the random walk above:

For a more random walk than this, see the program bug on my web site.

page 11

Strings

In computer science, any sequence of characters like this goes by the name of string.
Dealing with strings is fundamental: for example, how does the computer understand
the commands that we give it? It has to break them into pieces and figure out what
the pieces mean according to what they are and where they are.

Counting the characters is the most basic of all string processes. The answer to the

question howlong "abcdefg is given by the following procedure:

 to howlong :s

 make "count 0

 ; why zero?

 while [not emptyp :s] [

 make "count :count + 1

 print first :s

 ; it's helpful to see it

 make "s butfirst :s

 ; butfirst means all but

 ; the first of something

]

 print (sentence :s "has :c "letters)

 end

The command print writes a result on the command line, and we can see a sequence
of results in the command history. When you're writing and troubleshooting a
procedure like this, it's useful to show yourself the intermediate values, as we do in the
statement print first :s. It wouldn't hurt to print butfirst :s at this stage, too.

Here's a much more challenging task: use the new ideas shown above to make a
procdure that counts the number of occurrences of a character within a string. For

example, the command howmany "a "yabbadabba would give the result 4.

page 12

Recursive procedures

Can a procedure call itself? Why not? When it does, it is called a recursive procedure
because the call recurs — there's a recurrence of the procedure within the procedure.

This pleasing picture was produced by the following procedure with the call

spiral 50 :

 to spiralR :n

 if :n < 1 [stop]

 fd :n

 rt 20

 spiralR 0.95 * :n

 end

Why does this work? What values does the procedure operate on? Why doesn't it just
go on forever? It is a deep fact of computer science that every procedure written with
repeat can also be written as a recursive procedure.

You might want to rewrite the procedure with variables instead of constants so that you
can more easily conduct spiral experiments.

The following is a rewrite of the procedure howlong on the preceding page. Some
people believe that the recursive version shows a more natural way to think and is
easier to understand. (It's certainly shorter.) What do you think?

 to howlongR :s

 if emptyp :s [output 0]

 output 1 + howlongR butfirst :s

 end

Challenge: Use this procedure as a model for one that computes n! or one that
concatenates (sticks together) two strings.

page 13

Turtle geometry

Many programming systems work on the same kind of two-axis xy coordinate plane
that you work with in algebra.

x is horizontal
y is vertical

0 0 is the center, or origin
(no comma or parentheses here!)

In its centered, zoom-"normal" state,
Logo's drawing screen shows an area
about 150 points up or down
and 300 points right or left
from the center.

The turtle can be directed with headings that correspond to a compass rose,
with 0 or 360 degrees pointing straight up, 90 degrees straight to the right, and so on.
You can set a variable to a number between 0 and 360 and then walk that way.

TURTLE GEOMETRY
setx 100 set turtle's x-coordinate to +100

move it 100 points to right of center
no vertical change

setx -200 move turtle 200 points to left of center
no vertical change

sety 150 set turtle's y-coordinate to 150
move it 150 points above center
no horizontal change

sety -50 move turtle 50 points below center
no horizontal change

setxy 100 100 move turtle to xy coordinate 100 100
show xcor

show ycor

report on command line:
where is the turtle now?

cs

sety 100

 setx 100

 sety 0

 setx 0

think about it —
try it!

setheading 0

 or seth 0
point turtle straight up, "high noon," "due north"

seth 120 four o'clock

page 14

Color in Logo

Computer screens work with red, green, and blue components of light,
 so they are sometimes called RGB screens.
 (Remember Roy G. Biv?)

On Logo's Set menu, you can set the color of three screen elements —
 the turtle's pen
 the turtle's fill (like a paint bucket for enclosures)
 the screen background

You set a color by moving these three sliders left and right.

Recall that black is the absence of all color and white is all colors together.
 Mixing light isn't like mixing paint.
 If you mix red and green paint, you get a muddy color —
 what happens if you mix red and green light?

Since this is a computer, every color has an internal numeric representation.
 The left end is of the sliding scale 0, zero.
 The right end is 255, which is kind of like 99 to a computer. (It's 28 - 1.)

Thus black is [0 0 0], red is [255 0 0], green is [0 255 0], blue is [0 0 255],
 you can make anything in between that you like,
 and in all there are 256 * 256 * 256 possible colors.
 That's 28 * 28 * 28 , or 24 bits of color — 24 binary digits inside the machine.

These commands give you a big fat red pen:

 setpensize [5 5]

 setpencolor [255 0 0]

page 15

My colors color values

red

green

blue

black

white

yellow

When you find a color you like using sliders, you can ask Logo what it is:
 choose the pen color, then in the command window, enter

 show pencolor

You can make a colored square like this:
 draw the square
 pen up
 go to a point inside the square
 fill

Color- and pen-related
commands

setpencolor [r g b]

setpc [r g b]
color for turtle's pen
r g b are numbers in range [0, 255]

setfloodcolor [r g b]

setfc [r g b]

color for an enclosed area

setscreencolor [r g b]

setsc [r g b]

color for background

show pencolor

show floodcolor

show screencolor

tells you what values are right now
for [r g b] of named item

fill dumps a bucket of current floodcolor
at cursor's location

setpensize [w h] sets width and height of pen
w h are numbers in range [1, 5]

page 16

A method for teaching color names to Logo

This method comes from the web site of Simone Rudge at Yukon College in Canada.
She has published course notes for an entire semester's worth of serious Logo!
http://www.yukoncollege.yk.ca/~srudge/comp052/notes.html

Logo has a command op (short for output) that "produces" what you ask it to.

 For example, if you want blue and the computer calls blue [0 0 255],

 you write a procedure for blue using op to produce the color vector

 when you issue the command.

Do colors in this way in the Logo editor:

to blue

op [0 0 255]

end

to yellow

op [255 255 0]

end

then, when you want, for example, a yellow pen:

setpencolor yellow

When Logo sees the word yellow,

it looks in the list of procedures that it knows,
finds your procedure for yellow,
and sets the pen color accordingly.

Make a blue square with yellow inside:

 setpc blue

 repeat4 [fd 100 rt 90]

 rt 45

 penup

 fd 25

 setfc yellow

 fill

page 17

Using code from other people's programs

Many people, including me, put their code on the Internet and invite you to use it in
Logo procedures of your own. This is very easily done using cut-and-paste techniques
with the Microsoft Windows clipboard.

Here's one way to use code from somebody else's web page:

use Logo code
from a web page

happy ending

click on the link

you want

1: browser

want all

or some?

2: browser

Control-A

on keyboard

to Select All

3: browser

right-click and drag

with mouse

to highlight selection

all of it just some

you need two windows:

one for the browser

(Internet Explorer,

Netscape)

and one for MSW Logo

need whole

procedure?

select carefully!

if editor finds errors,

check:

duplicate procedure names?

one procedure starts before

another ends?

File menu/

Save and Exit

7: Editor (in Logo)

enter new

procedure name

on command line

and run!

8: MSW Logo

now go to

MSW Logo

window

4: browser

Control-C

to copy

selection

to clipboard

5: MSW Logo

6: Editor (in Logo)

position cursor

with care,

then Control-V

to paste

click Edall

button
(or write edall

on command line)

People who know Windows well can think of half a dozen ways to do the same thing,
but I find this one reliable and straightforward.

If your Logo doesn't have an Edall button (box 5), write edall on the command line.

page 18

Saving your pictures and programs

Computer work is saved in computer files, with different kinds of work being saved in
files with different names. On a Microsoft Windows system, files have screen icons and
filename extensions that vary according to file content, and thus Logo pictures and
Logo commands are saved in distinct kinds of files.

One type of file for saving a computer picture is called a bitmap. It's a grid of dots, like
the computer screen itself, in which every dot's location and color are remembered.
You can recognize a bitmap file by its icon (the little picture you double-click to open a
file) or by its extension .BMP. Your computer might not be set up to show filename
extensions, but you can change that with Folder View or Tools.

save Logo picture

check

the bitmap file

bitmap

too small?

you need to figure out

the xy coordinates

of the desired area

just right

5: MSW Logo

Bitmap menu/

Active Area

6: MSW Logo

change the

coordinates

from the default,

then try again

from the top

TOP

TOP
bitmap

too big?

you can also resize

the area using the

method for “too small,”

but it’s easier to crop

using Paint

7: Paint

with Selection tool,

draw box around

desired part of picture

9: Copy To

save

under a new

filename

8: Paint

Edit menu/

Copy To

yes

no

yes

no

4: Paint

File menu/

Close
(never mind!)

Bitmap menu/

Save As

1: MSWLogo

2: SaveAs

choose folder

(Desktop suggested!)

and filename

3: Desktop or other folder

right-click the file

you just saved, then

Open With >> Paint

Other bitmap formats are more compact; the bitmap files created by Logo are huge.
You can conserve space and time, in case you send your drawings over the Internet, by
converting your bitmap to another format. Two programs you could use for this are the
Windows accessory program Paint and the wonderfully useful IrfanView. Copy and
paste, then use the Save As menu of the other program to select a format.

page 19

You will want to save the Logo procedures that you write, either to show off for other
people or to continue refining them. (Probably both.) Like other programs, Logo saves
nothing until you tell it to.

A feature of MSW Logo is that before you save, it remembers your work in two ways,
as well as in two distinct locations:

 your command-line commands are remembered in the command history

 your procedures, i.e., the words you added to Logo, are remembered
in the editor

When you do File menu/ Save, only the procedures are saved. If you want to
remember the commands as well, then you must copy and paste them into the editor.

.LGO is the filename extension for files of procedures created by MSW Logo.

save Logo procedures

did you write

a procedure?

MSW Logo saves

only code that’s in

the procedure editor

copy commands

from command history

to editor

with mouse,

highlight commands

you want to save

1: Commander

click Edall

button
(or write edall

on command line)

3: Commander

position cursor with care,

then

Control-V

to paste code into place

5: Editor

on keyboard,

Control-C to copy

highlighted code

to clipboard

2: Commander

if you see just

to

 end

erase it!

4: Editor

wrap code in procedure:

to whatever

 your code

end

6: Editor

File menu

Save and Exit

7: Editor

File menu/ Save

or

File menu/ Save As

8: MSW Logo

happy ending

whew!

whew!

no...

yes, lots of them

including one granddaddy that calls all the others

You can also use the Windows clipboard to copy and paste your procedures from the
Logo command history or the Logo editor into an e-mail to yourself. Later, you will
need to copy and paste them from the e-mail back into Logo's editor.

To recall your Logo code later
From the main MSW Logo screen, do File menu/ Load, then select the file you want.
Logo will look for .LGO files by default. (Double-clicking on a file to open it doesn't
seem to work in all versions of Windows.)

page 20

References

Here are a few of many great sources for more information about Logo.

Harvey, B. Computer Science Logo Style, second edition. Cambridge, Massachusetts:
MIT Press, 1997.
 In this amazing three-volume book, Brian Harvey teaches computer science —

for adults, not children — using Logo. This work will be of particular interest to

someone who wants to approach computer science using functional programming, as
opposed to structural (e.g., Pascal) or object-oriented (e.g., Java). All 1000 pages can
be downloaded from the author's web page at www.cs.berkeley.edu/~bh.
 Harvey is one of the authors of Berkeley Logo, available on a variety of
platforms, including Linux. (MSW Logo is based on Berkeley Logo.) He has also written
a beginning computer science book using the functional language Scheme.

And here are some web sites, each with more links. (Use Google if the link is broken.)

 MSW Logo, created by George Mills
 www.softronix.com/logo.html
 Fabulous freeware with links to many other sites.

 A Turtle for the Teacher, by Paul Dench
 www.ecu.edu.au/pa/ecawa/sig/logo/paul_dench/turtle/
 Detailed and lengthy, at an elementary level.

 Simone Rudge's college-level course outline
 www.yukoncollege.yk.ca/~srudge/comp052/notes.html
 Likewise, at a college level.

 Logo Art Gallery by Yehuda Katz
 www.geocities.com/CollegePark/Lab/2276/
 Lots of arty and recursive examples.

 Logo Foundation at MIT
 el.media.mit.edu/logo-foundation/index.html
 MIT's Artifical Intelligence Lab and Professor Seymour Papert have been
 instrumental in the development of Logo and the "learn by making" philosophy
 that Logo embodies. The Logo Foundation's What Is Logo page suggests the
 breadth and depth of Logo development around the world.

