Question Bank of Mathematics class $9^{\text {th }}$:
Q1: Consider the sequence whose nth terms:
$\mathrm{U} 1=\mathrm{t} 1-\mathrm{s}=1-1=0$
$\mathrm{U} 2=\mathrm{t} 2-\mathrm{s}=2-1=1$
$U 3=t 3-s=3-1=2$

1. Evaluate U4 and U5.
2. Express Un in terms of n.

Q2:a) A solid metallic cone with radius 6 cm has a volume of $526 \mathrm{~m}^{3}$. Calculate the height of the cone. (take $\pi=3.142$)
b) A right pyramid has a square base of sides 12 cm . Given that height of the pyramid is 37 cm , find the volume of the pyramid, giving your answer correct to 3 significant figures.

Q3: a) Make x the subject of formula $d=\frac{a+b}{c x}$
b) If the slant height of the cone is 64 cm and vertical angle is 58°, calculate the radius of the cone.

Q4: a) how many hemispheres are there in 366 spheres, a sphere radius is 4 cm ?
b) Find the surface area of the hemisphere given that the radius is 8.5 cm .

$$
\text { Q5: a) Simplify } \frac{8^{\frac{1}{2}}}{128^{\frac{1}{4}}}
$$

Q4:a)
An iron rod has volume $1608 \mathrm{~cm}^{3}$. How many spherical balls of radius 4 cm can be made from this rod?
Q6: a) If y varies inversely as x and $y=10$, when $x=6$, express y terms of x.
b) Simplify $\left(a^{3} b^{2}\right)\left(a^{\frac{1}{2}} b^{9}\right)$ and express your answer in the radical form.

Q5:a) If $v^{2}=\frac{2(E-m g h)}{m}$, find the value of V , when $\mathrm{E}=1000, \mathrm{~m}=5, \mathrm{~g}=15$ and $\mathrm{h}=10$.
b) Make w as the subject of the formula $d=R-\sqrt{R w}$.
c) Given circle has a radius of 11 cm . Take $\pi=3.142$, calculate
i) The length of the minor arc $A B$.
ii) The area of the minor sector AOB .

Q6: F varies directly as V and inversely as the square of r , if $\mathrm{F}=1$ and $\mathrm{v}=12$ and $\mathrm{r}=6$
i) Express F in terms of V and r .
ii) Calculate the value of V when $\mathrm{F}=6$ and $\mathrm{r}=2$.

Q7: Find the area and perimeter of the shaded region ($\pi=3.142$)

inner diameter $=2 \mathrm{~cm}$

Q8: a) Express $\frac{5 x}{x^{2}-4}-\frac{3(x+1)}{x^{2}+3 x-10}$ as a single denominator.
$\begin{array}{ll}\text { b) Simplify: i) } \frac{7}{x}-\frac{5}{x^{2}-7 x} & \text { ii) } \frac{a-5 x}{3 a-4 x}=\frac{1}{3}\end{array}$
(a)

Q9: Calculate the perimeter and area of the sector whose:
radius is 10 cm and arc length is 14 cm .
Q10: Solve the following:
i) $\quad 25^{1-3 x}=125^{x-1}$
ii) $\quad 4.67 \times 10^{3}$ (change into ordinary notation)
iii) $\quad 3^{x+1}=27$

Q11: i) Solve: $2+\frac{3 x}{2} \leq \frac{5 x+1}{3} \leq \frac{3 x+11}{2}$
ii) Smallest integer value: $3 x+5>24$
iii) $\quad 3-3 x \leq 2+2 x<5 x+1$
iv) Given that $2 \leq x \leq 6$ and $-6 \leq y \leq-2$, find
a) The greatest possible value of $x^{2}-y^{2}$
b) Smallest possible value of $x^{2}-y^{2}$
c) Smallest value of xy .
d) The greatest possible value of $\frac{x}{y}$.

Q12: Is the triangle whose sides are $8 \mathrm{~cm}, 6 \mathrm{~cm}$ and 10 cm a right angled triangle?

Q13: In the figure given below, what is the angle of depression? (if observed from point A)

ABC , point A on the top of the light house and angle is 162°.

