Name: Class: Date:

1) Find angle $A B C$ in the diagram below, giving a reason for your answer.

2) Find angle OBA in the following diagram, giving a reason for your answer.

3) In the diagram below, angle $\mathrm{AOC}=135^{\circ}$.

Find angle $A B C$, giving a reason for your answer.

4) In the diagram below, angle $\mathrm{ADC}=88^{\circ}$.

Find angle ABC , giving a reason for your answer.

5) In the diagram below, angle $\mathrm{OAB}=43^{\circ}$.

Find angle OBA, giving a reason for your answer.

6) Find angle x in the following diagram, giving a reason for your answer.

7) In the diagram below, angle $\mathrm{BAC}=65^{\circ}$.

Find the following angles, giving reasons for your answers:
a) angle ABC
b) angle ACB
8) Find angle AOC in the following diagram, giving reasons for your answer.

Find angle AOB, giving reasons for your answer.

10) In the diagram below, angle $\mathrm{ABC}=58^{\circ}$.

Find angle AOC, giving a reason for your answer.

11) The diagram below shows a circle with points A, B, C and D on the circumference.

Find the following angles, giving reasons for your answers:
a) angle ABD
b) angle BAC
12) In the diagram below, angle $A O B=83^{\circ}$.

Find angle OAB, giving reasons for your answer.

13) In the diagram below, angle $\mathrm{DAB}=83^{\circ}$ and angle $\mathrm{ABC}=96^{\circ}$.

Find the following angles, giving reasons for your answers:
a) angle BCD
b) angle CDA
14) In the diagram below, angle $\mathrm{BOC}=97^{\circ}$.

Find the following angles, giving reasons for your answers:
a) $\begin{gathered}\text { angle } \\ \mathrm{OCB}\end{gathered}$
b) $\underset{\mathrm{CBO}}{\text { angle }}$
c) $\begin{aligned} & \text { angle } \\ & \mathrm{OAB}\end{aligned}$
15) In the diagram below, angle $\mathrm{ABD}=37^{\circ}$.

Find the following angles, giving reasons for your answers:
a) angle BDC
b) angle CBD
16) Find angle $A O B$ in the following diagram, giving reasons for your answer.

Find angle ABC , giving a reason for your answer.

18) In the diagram below, angle $\mathrm{XAB}=46^{\circ}$.

Angle $\mathrm{YAD}=50^{\circ}$. Find angle BCD , giving a reason for your answer.

19) In the diagram below, angle $\mathrm{BAC}=48^{\circ}$.

Find the following angles, giving reasons for your answers:
a) $\begin{aligned} & \text { angle } \\ & \mathrm{ABD}\end{aligned}$
b) $\underset{\mathrm{COD}}{\text { angle }}$
c) $\begin{aligned} & \text { angle } \\ & \mathrm{CDO}\end{aligned}$
20) In the diagram below, angle $\mathrm{ABE}=44^{\circ}$.

Find the following angles, giving reasons for your answers:
a) angle ACE
b) angle ADE
21) In the diagram below, angle $A B C=32^{\circ}$.

Find the following angles, giving reasons for your answers:
a) angle BAC
b) angle ADC
22) In the diagram below, angle $\mathrm{ACB}=45^{\circ}$.

Find angle BDC, giving reasons for your answer.

23) In the diagram below, angle $\mathrm{ADC}=50^{\circ}$.

Find the following angles, giving reasons for your answers:
a) angle x
b) angle y
24) In the diagram below, angle $B O C=54^{\circ}$.

Find angle BAE, giving reasons for your answer.

Find angle ACB , giving reasons for your answer.

26) In the diagram below, angle $\mathrm{ABD}=82^{\circ}$.

Find the following angles, giving reasons for your answers:
a) angle ACD
b) angle AED
27) In the diagram below, angle $\mathrm{ADC}=94^{\circ}$ and angle $\mathrm{ACD}=40^{\circ}$.

Find angle DBC, giving reasons for your answer.

Solutions for the assessment Revision 5: Circle Theorems

1) angle $\mathrm{ABC}=90^{\circ}$

Reason: Angle in a semicircle is 90°
3) angle $\mathrm{ABC}=67.5^{\circ}$

Reason: Angle at centre is twice angle at circumference
5) angle $\mathrm{OBA}=43^{\circ}$

Reason: Isosceles triangle
7) a) angle $\mathrm{ABC}=90^{\circ}$
b) angle $\mathrm{ACB}=25^{\circ}$

Reasons: Angle in a semicircle is 90° and angle sum of a triangle is 180°
9) angle $\mathrm{AOB}=96^{\circ}$

Reason: Isosceles triangle and angle sum of a triangle
11) a) angle $\mathrm{ABD}=32^{\circ}$
b) angle $\mathrm{BAC}=30^{\circ}$

Reason: Angles in the same segment are equal
2) angle $\mathrm{OBA}=90^{\circ}$

Reason: Angle between tangent and radius is 90°
4) Angle $\mathrm{ABC}=92^{\circ}$

Reason: Opposite angles in a cyclic quadrilateral sum to 180°
6) $x=39^{\circ}$

Reason: Angles in the same segment are equal
8) angle $\mathrm{AOC}=119^{\circ}$

Reasons: Angle between tangent and radius is 90° and angle sum of a quadrilateral is 360°
10) angle $\mathrm{AOC}=116^{\circ}$

Reason: Angle at centre is twice angle at circumference
12) angle $\mathrm{OAB}=48.5^{\circ}$

Reason: Angle sum of a triangle is 180° and isosceles triangle
13) a) angle $\mathrm{BCD}=97^{\circ}$
b) angle $\mathrm{CDA}=84^{\circ}$

Reason: Opposite angles in a cyclic quadrilateral sum to 180°
14) a) angle $\mathrm{OCB}=41.5^{\circ}$
b) angle $\mathrm{CBO}=41.5^{\circ}$
c) angle $\mathrm{OAB}=48.5^{\circ}$

Reason: Angle sum of a triangle is $180^{\circ}+$ isosceles triangle + angles on a straight line
16) angle $\mathrm{AOB}=69^{\circ}$

Reasons: Angle between tangent and radius is 90° and congruent triangles
18) angle $\mathrm{BCD}=96^{\circ}$

Reason: Alternate Segment Theorem
19) a) angle $\mathrm{ABD}=48^{\circ}$
b) angle $\mathrm{COD}=84^{\circ}$
c) angle $\mathrm{CDO}=48^{\circ}$

Reason: Isosceles triangle + angle sum of a triangle + vertically opposite angles or isosceles triangle + angles in the same segment are equal + angle sum of a triangle
21) a) angle $\mathrm{BAC}=58^{\circ}$
b) angle $\mathrm{ADC}=58^{\circ}$

Reason: Angle in a semicircle + angle between tangent and radius + angle sum of triangle
23) a) angle $x=100^{\circ}$
b) angle $y=130^{\circ}$

Reason: Angle at centre and circumference + cyclic quadrilateral
25) angle $\mathrm{ACB}=88^{\circ}$

Reason: Angle between tangent and radius + isosceles triangle + angle sum of triangle
20) a) angle $\mathrm{ACE}=44^{\circ}$
b) angle $\mathrm{ADE}=44^{\circ}$

Reason: Angles in the same segment are equal
22) angle $\mathrm{BDC}=45^{\circ}$

Reason: Angle in a semicircle + angle sum of triangle + angles in same segment

24) angle $\mathrm{BAE}=63^{\circ}$

Reason: Angle at centre and circumference + angle between tangent and radius
or angles on a straight line + isosceles triangle + angle sum of triangle + angle between tangent and radius
26) a) angle $\mathrm{ACD}=82^{\circ}$
b) angle $\mathrm{AED}=98^{\circ}$

Reason: Angles in the same segment + cyclic quadrilateral
27) angle $\mathrm{DBC}=46^{\circ}$

Reason: Angles in the same segment + cyclic quadrilateral

