The City School North Nazimabad Boys Campus Add Maths Grade9 Revision worksheet

1

1

[1]

[4]

Q1 (a) Solve the equation lg(x + 12) = 1 + lg(2 - x).

(b) $\lg(5x + 10) + 2 \lg 3 = 1 + \lg(4x + 12)$,

Q2 Given that $p = \frac{\sqrt{3} + 1}{\sqrt{3} - 1}$, express in its simplest surd form,

(i)

(ii)
$$p - \frac{1}{p}$$
.

p,

Q3 (i) Given that $\frac{2^{x-3}}{8^{2y-3}} = 16^{x-y}$, show that 3x + 2y = 6.

(ii) Given also that $\frac{5^y}{125^{x-2}} = 25$, find the value of x and of y.

Q4 Express
$$\frac{(4\sqrt{5} - 2)^2}{\sqrt{5} - 1}$$
 in the form \sqrt{p} 5 + q, where p and q are integers.]

Q2 Solve the equation lg(3x-2) + lg(x+1) = 2 - lg2.

- **Q5** The remainder when the expression $x^3 11x^2 + kx 30$ is divided by x 1 is 4 times the remainder when this expression is divided by x 2. Find the value of the constant k.
- **Q6** Solve the equation $x^3 4x^2 8x + 8 = 0$, expressing non-integer solutions in the form $a \pm \sqrt{b}$, where a and b are integers.
- Q7 (i) Using the substitution $y = 5^x$, show that the equation $5^{2x+1} 5^{x+1} + 2 = 2(5^x)$ $ay^2 + by + 2 = 0$, where *a* and *b* are constants to be found.
 - (ii) Hence solve the equation $5^{2x+1} 5^{x+1} + 2 = 2(5^x)$.

8 Given that
$$6x + 5ax - 12a$$
 leaves a remainder of -4 when divided by $x - a$, find the possible values of *a*.

- 1 It is given that $f(x) = 4x^3 4x^2 15x + 18$.
 - (i) Show that x + 2 is a factor of f(x).
 - (ii) Hence factorise f(x) completely and solve the equation f(x) = 0.

3 Without using a calculator, solve, for x and y, the simultaneous equations

$$8^{x} \div 2^{y} = 64,$$

 $3^{4x} \times (\frac{1}{9})^{y-1} = 81.]$

5 (i) Given that
$$2^{5x} \times 4^y = \frac{1}{8}$$
, show that $5x + 2y = -3$.

(ii) Solve the simultaneous equations
$$2^{5x} \times 4^{y} = \frac{1}{8}$$
 and $7^{x} \times 49^{2y} = 1$. [4]

- 7 (i) Use the substitution $u = 2^x$ to solve the equation $2^{2x} = 2^{x+2} + 5$. [5]
- **5** Solve the equation

(i)
$$\frac{4^x}{2^{5-x}} = \frac{2^{4x}}{8^{x-3}}$$
, [3]

(ii)
$$\lg(2y+10) + \lg y = 2.$$
 [3]

2 Do not use a calculator in this question.

Express
$$\frac{(4\sqrt{5}-2)^2}{\sqrt{5}-1}$$
 in the form $p\sqrt{5}+q$, where p and q are integers. [4]

8 (a) The remainder when the expression $x^3 - 11x^2 + kx - 30$ is divided by x - 1 is 4 times the remainder when this expression is divided by x - 2. Find the value of the constant k. [4]

10 (a) Solve
$$\lg(7x-3) + 2\lg 5 = 2 + \lg(x+3)$$
. [4]

- (b) Use the substitution $u = 3^x$ to solve the equation $3^{x+1} + 3^{2-x} = 28$. [5]
- 4 (i) Using the substitution $y = 5^x$, show that the equation $5^{2x+1} 5^{x+1} + 2 = 2(5^x)$ can be written in the form $ay^2 + by + 2 = 0$, where *a* and *b* are constants to be found. [2]
 - (ii) Hence solve the equation $5^{2x+1} 5^{x+1} + 2 = 2(5^x)$. [4]
- 2 The expression $x^3 + ax^2 15x + b$ has a factor x 2 and leaves a remainder of 75 when divided by x + 3. Find the value of *a* and of *b*. [5]
- 8 Solve the equation

. .

(i) lg(5x + 10) + 2lg3 = 1 + lg(4x + 12), [4]

(ii)
$$\frac{9^{2y}}{3^{7-y}} = \frac{3^{4y+3}}{27^{y-2}}$$
. [3]

Q3 (i) Given that $\frac{2^{x-3}}{8^{2y-3}} = 16^{x-y}$, show that 3x + 2y = 6.

(ii) Given also that $\frac{5^y}{125^{x-2}} = 25$, find the value of x and of y.

3 Solve the equation
$$2\lg x - \lg\left(\frac{x+10}{2}\right) = 1.$$

5 (a) Solve the following equations to find p and q.

$$8^{q-1} \times 2^{2p+1} = 4^7$$

$$9^{p-4} \times 3^q = 81$$
[4]

5 Solve the simultaneous equations

$$\frac{4^x}{256^y} = 1024,$$

$$3^{2x} \times 9^y = 243.$$
 [5]

10 (a) Solve
$$\lg(7x-3) + 2\lg 5 = 2 + \lg(x+3)$$
. [4]

(b) Use the substitution $u = 3^x$ to solve the equation $3^{x+1} + 3^{2-x} = 28$. [5]

9 (a) Express
$$(2-\sqrt{5})^2 - \frac{8}{3-\sqrt{5}}$$
 in the form $p + q\sqrt{5}$, where p and q are integers. [4]

(**b**) Given that
$$\frac{a^x}{b^{3-x}} \times \frac{b^y}{(a^{y+1})^2} = ab^6$$
, find the value of x and of y. [4]

- 8 (a) Find the value of each of the integers p and q for which $\left(\frac{25}{16}\right)^{-\frac{3}{2}} = 2^p \times 5^q$. [2]
 - (b) (i) Express the equation $4^x 2^{x+1} = 3$ as a quadratic equation in 2^x . [2]
 - (ii) Hence find the value of *x*, correct to 2 decimal places. [3]

9 The function $f(x) = x^3 - 6x^2 + ax + b$, where *a* and *b* are constants, is exactly divisible by x - 3 and leaves a remainder of -55 when divided by x + 2.

(i) Find the value of a and of b. [4]

(ii) Solve the equation
$$f(x) = 0$$
. [4]