Exam-style questions Part 1

The diagram shows a solid triangular prism. The dimensions are in metres.

Calculate the volume of the prism.

ii Calculate the total surface area of the prism (Unit for answer: m^3).

b

The diagrams show the cross-sections of a ramp A and a triangular prism B.

The triangular prism B can move up and down the ramp A.

The ramp is inclined at 25° to the horizontal.

When the prism has moved 2 m up the ramp, it has risen h metres vertically. Calculate h.

ii As it moves, the uppermost face of the prism B remains horizontal. The length of the horizontal edge of the face is 0.6 m. The length of the vertical edge of the prism is y metres. Calculate y.

(4024 paper 22 Q4 November 2014)

7 North 1459 North

The bearing of a lighthouse, L, from a port, P, is 145°. Find the bearing of P from L.

(0580 paper 01 Q7 June 2007)

A hot air balloon, M, is 900 metres vertically above a point N on the ground.

A boy stands at a point, O, 1200 metres horizontally from N.

a Calculate the distance, OM, of the boy from the balloon.

b Calculate angle MON. (0580 paper 01 Q18 June 2007)

9 Write as a 3-figure bearing the direction:

a West

A

North-East.

(0580 paper 01 Q6 November 2004)

NOT TO SCALE

ABCED is the cross-section of a tunnel.

ABCD is a rectangle and DEC is a semicircle. O is the midpoint of AB.

OD = OC = 6 m and angle $DOC = 56^{\circ}$.

- **a** i Show that angle $COB = 62^{\circ}$.
 - ii Calculate the length of OB.
 - **iii** Write down the width of the tunnel, AB.
 - iv Calculate the length of BC.
- **b** Calculate the area of:
 - i the rectangle ABCD
 - ii the semicircle DEC
 - iii the cross-section of the tunnel.
- c The tunnel is 500 metres long.
 - i Calculate the volume of the tunnel.
 - ii A car travels through the tunnel at a constant speed of 60 kilometres per hour.

How many seconds does it take to go through the tunnel?

(0580 paper 03 Q6 June 2007)

The diagram above shows a cuboid and its net.

- Calculate the total surface area of the cuboid.
- **b** Calculate the volume of the cuboid
- An ant walks directly from A to C on the surface of the cuboid.
- Draw a straight line on the net to show this route.
- ii Calculate the length of the ant's journey.
- iii Calculate the size of angle CAB on the net. (0580 paper 03 Q8 June 2005)

Exam-style questions Part 2

8 cm

DO NOT USE A CALCULATOR IN THE REST OF THIS EXERCISE

$\sin heta$	<u>5</u> 13
$\cos heta$	12 13
an heta	<u>5</u>

ABCD is a rectangle with BC = 10 cm. Using as much information from the table as is necessary, calculate BD.

(4024 paper 01 Q6 June 2008)

13 A is due north of O.

- A ship sailed from O to B, where $A\hat{O}B = 12^{\circ}$. Write down the bearing of B from O.
- **b** At B, the ship turned and sailed to C, where $O\hat{B}C = 50^{\circ}$. Calculate the bearing of C from B.

(4024 paper 01 Q4 June 2005)

• North

The bearing of a lighthouse from a ship, S, is 220°.

The position of S is marked on the diagram.

- **a** Which of the four points A, B, C or D is a possible position of the lighthouse?
- **b** Write down the bearing of S from the lighthouse.

(4024 paper 11 Q5 June 2010)

O• • B

15 A man who is 1.8 m tall stands on horizontal ground 50 m from a vertical tree.

The angle of elevation of the top of the tree from his eyes is 30°.

Use as much of the information below as is necessary to calculate an estimate of the height of the tree.

Give the answer to a reasonable degree of accuracy.

 $[\sin 30^\circ = 0.5, \cos 30^\circ = 0.866, \tan 30^\circ = 0.577]$

(4024 paper 01 Q24 June 2004)

16

In the diagram, the circle, centre O, passes through A, B and C.

AC is a diameter of the circle and the line TAS is the tangent at A.

 $\angle ACB = 34^{\circ}$, TA = 3 cm and TC = 5 cm.

- a Find ∠BAC.
- **b** Calculate the radius of the circle.

(4024 paper 01 Q4 November 2007)

- a i 105m³b i 0.845
- **7** 325°
- 8 a 1500 m
- 9 a 270°

ii 197m²
ii 0.280

b 36.9°

b 045°

10 a i $\angle COB = \frac{1}{2}(180 - 56) = 62$

ii 2.82 m

iii 5.63 or 5.64 m

iv 5.30 m

b i 29.8 or 29.9 m²

ii 12.5 m^2

iii 42.3 or 42.4 m²

c i 21100 or 21200 m³

ii 30

11 a 208 cm²

b 192 cm³

c ii 12.8 cm

iii 51.3 or 51.4°

12 26 cm

13 a 348°

b 218°

14 a C

b 40°

15 31 m

16 a 56°

b 2 cm