Visual Basic
Console. A console program has no graphics. It is text. Easy to develop, it uses few resources and is efficient.
These programs, however, will readily accomplish an analytical or processing \task. We invoke WriteLine and Write. We can use ReadLine for input. Numbers and strings are handled.
An example. This program uses Console.WriteLine. It prints "Hello world" to the screen. The program is contained in a module named Module1. The Sub Main is the entry point of the program.

Imports System
Module Module1
 'This program will display Hello World
 Sub Main()
 Console.WriteLine("Hello World")
 Console.ReadKey()
 End Sub
End Module

Data Types Available in VB.Net
VB.Net provides a wide range of data types. The following table shows all the data types available:
	Data Type
	Storage Allocation
	Value Range

	Boolean
	Depends on implementing platform
	True or False

	Byte
	1 byte
	0 through 255 (unsigned)

	Char
	2 bytes
	0 through 65535 (unsigned)

	Date
	8 bytes
	0:00:00 (midnight) on January 1, 0001 through 11:59:59 PM on December 31, 9999

	Decimal
	16 bytes
	0 through +/-79,228,162,514,264,337,593,543,950,335 (+/-7.9...E+28) with no decimal point; 0 through +/-7.9228162514264337593543950335 with 28 places to the right of the decimal

	Double
	8 bytes
	-1.79769313486231570E+308 through -4.94065645841246544E-324, for negative values
4.94065645841246544E-324 through 1.79769313486231570E+308, for positive values

	Integer
	4 bytes
	-2,147,483,648 through 2,147,483,647 (signed)

	Long
	8 bytes
	-9,223,372,036,854,775,808 through 9,223,372,036,854,775,807(signed)

	Object
	4 bytes on 32-bit platform
8 bytes on 64-bit platform
	Any type can be stored in a variable of type Object

	
	
	

	
	
	

	Single
	4 bytes
	-3.4028235E+38 through -1.401298E-45 for negative values;
1.401298E-45 through 3.4028235E+38 for positive values

	String
	Depends on implementing platform
	0 to approximately 2 billion Unicode characters

Module DataTypes
 Sub Main()
 Dim b As Byte
 Dim n As Integer
 Dim si As Single
 Dim d As Double
 Dim da As Date
 Dim c As Char
 Dim s As String
 Dim bl As Boolean
 b = 1
 n = 1234567
 si = 0.12345678901234566
 d = 0.12345678901234566
 da = Today
 c = "U"c
 s = "Me"
 If ScriptEngine = "VB" Then
 bl = True
 Else
 bl = False
 End If
 If bl Then
 'the oath taking
 Console.Write(c & " and," & s & vbCrLf)
 Console.WriteLine("declaring on the day of: {0}", da)
 Console.WriteLine("We will learn VB.Net seriously")
 Console.WriteLine("Lets see what happens to the floating point variables:")
 Console.WriteLine("The Single: {0}, The Double: {1}", si, d)
 End If
 Console.ReadKey()
 End Sub

End Module

Variables
A variable is nothing but a name given to a storage area that our programs can manipulate. Each variable in VB.Net has a specific type, which determines the size and layout of the variable's memory; the range of values that can be stored within that memory; and the set of operations that can be applied to the variable.
	Type
	Example

	Integral types
	SByte, Byte, Short, UShort, Integer, UInteger, Long, ULong and Char

	Floating point types
	Single and Double

	Decimal types
	Decimal

	Boolean types
	True or False values, as assigned

	Date types
	Date

Variable Declaration in VB.Net
The Dim statement is used for variable declaration and storage allocation for one or more variables.
Some valid variable declarations along with their definition are shown here:
Dim StudentID As Integer
Dim StudentName As String
Dim Salary As Double
Dim count1, count2 As Integer
Dim status As Boolean
Dim exitButton As New System.Windows.Forms.Button
Dim lastTime, nextTime As Date
Variable Initialization in VB.Net
Variables are initialized (assigned a value) with an equal sign followed by a constant expression. The general form of initialization is:
variable_name = value;
for example,
Dim pi As Double
pi = 3.14159
You can initialize a variable at the time of declaration as follows:
Dim StudentID As Integer = 100
Dim StudentName As String = "Bill Smith"
Example
Try the following example which makes use of various types of variables:
Module variablesNdataypes
 Sub Main()
 Dim a As Short
 Dim b As Integer
 Dim c As Double
 a = 10
 b = 20
 c = a + b
 Console.WriteLine("a = {0}, b = {1}, c = {2}", a, b, c)
 Console.ReadLine()
 End Sub
End Module

Accepting Values from User
The Console class in the System namespace provides a function ReadLine for accepting input from the user and store it into a variable. For example,
Dim message As String
message = Console.ReadLine
The following example demonstrates it:
Module variablesNdataypes
 Sub Main()
 Dim message As String
 Console.Write("Enter message: ")
 message = Console.ReadLine
 Console.WriteLine()
 Console.WriteLine("Your Message: {0}", message)
 Console.ReadLine()
 End Sub
End Module
Constants
Declaring Constants
In VB.Net, constants are declared using the Const statement.
For example,
'The following statements declare constants.'
Const maxval As Long = 4999
Public Const message As String = "HELLO"
Private Const piValue As Double = 3.1415
Example
The following example demonstrates declaration and use of a constant value:
Module constantsNenum
 Sub Main()
 Const PI = 3.14149
 Dim radius, area As Single
 radius = 7
 area = PI * radius * radius
 Console.WriteLine("Area = " & Str(area))
 Console.ReadKey()
 End Sub
End Module
Statements
A statement is a complete instruction in Visual Basic programs. It may contain keywords, operators, variables, literal values, constants and expressions.
Statements could be categorized as:
· Declaration statements - these are the statements where you name a variable, constant, or procedure, and can also specify a data type.
· Executable statements - these are the statements, which initiate actions. These statements can call a method or function, loop or branch through blocks of code or assign values or expression to a variable or constant. In the last case, it is called an Assignment statement.
· Declaration Statements
· The declaration statements are used to name and define procedures, variables, properties, arrays, and constants. When you declare a programming element, you can also define its data type, access level, and scope.
· The programming elements you may declare include variables, constants, enumerations, classes, structures, modules, interfaces, procedures, procedure parameters, function returns, external procedure references, operators, properties, events, and delegates.
· Following are the declaration statements in VB.Net:
	S.N
	Statements and Description
	Example

	1
	Dim Statement
Declares and allocates storage space for one or more variables.
	Dim number As Integer
Dim quantity As Integer = 100
Dim message As String = "Hello!"

	2
	Const Statement
Declares and defines one or more constants.
	Const maximum As Long = 1000
Const naturalLogBase As Object
= CDec(2.7182818284)

	3
	Enum Statement
Declares an enumeration and defines the values of its members.
	Enum CoffeeMugSize
 Jumbo
 ExtraLarge
 Large
 Medium
 Small
End Enum

	4
	Class Statement
Declares the name of a class and introduces the definition of the variables, properties, events, and procedures that the class comprises.
	Class Box
Public length As Double
Public breadth As Double
Public height As Double
End Class

	5
	Structure Statement
Declares the name of a structure and introduces the definition of the variables, properties, events, and procedures that the structure comprises.
	Structure Box
Public length As Double
Public breadth As Double
Public height As Double
End Structure

	6
	Module Statement
Declares the name of a module and introduces the definition of the variables, properties, events, and procedures that the module comprises.
	Public Module myModule
Sub Main()
Dim user As String =
InputBox("What is your name?")
MsgBox("User name is" & user)
End Sub
End Module

	7
	Interface Statement

Declares the name of an interface and introduces the definitions of the members that the interface comprises.
	Public Interface MyInterface
 Sub doSomething()
End Interface

	8
	Function Statement
Declares the name, parameters, and code that define a Function procedure.
	Function myFunction
(ByVal n As Integer) As Double
 Return 5.87 * n
End Function

	9
	Sub Statement
Declares the name, parameters, and code that define a Sub procedure.
	Sub mySub(ByVal s As String)
 Return
End Sub

	10
	Declare Statement
Declares a reference to a procedure implemented in an external file.
	Declare Function getUserName
Lib "advapi32.dll"
Alias "GetUserNameA"
(
 ByVal lpBuffer As String,
 ByRef nSize As Integer) As Integer

	11
	Operator Statement
Declares the operator symbol, operands, and code that define an operator procedure on a class or structure.
	Public Shared Operator +
(ByVal x As obj, ByVal y As obj) As obj
 Dim r As New obj
' implemention code for r = x + y
 Return r
 End Operator

	12
	Property Statement
Declares the name of a property, and the property procedures used to store and retrieve the value of the property.
	ReadOnly Property quote() As String
 Get
 Return quoteString
 End Get
End Property

	13
	Event Statement
Declares a user-defined event.
	Public Event Finished()

	14
	Delegate Statement
Used to declare a delegate.
	Delegate Function MathOperator(
 ByVal x As Double,
 ByVal y As Double
) As Double

· Executable Statements
· An executable statement performs an action. Statements calling a procedure, branching to another place in the code, looping through several statements, or evaluating an expression are executable statements. An assignment statement is a special case of an executable statement.
· Example
· The following example demonstrates a decision making statement:
· Module decisions
· Sub Main()
· 'local variable definition '
· Dim a As Integer = 10
·
· ' check the boolean condition using if statement '
· If (a < 20) Then
· ' if condition is true then print the following '
· Console.WriteLine("a is less than 20")
· End If
· Console.WriteLine("value of a is : {0}", a)
· Console.ReadLine()
· End Sub
· End Module
· When the above code is compiled and executed, it produces the following result:
· a is less than 20;
· value of a is : 10
·
· Arithmetic Operators
· Following table shows all the arithmetic operators supported by VB.Net. Assume variable A holds 2 and variable B holds 7, then:
· Show Examples
	Operator
	Description
	Example

	^
	Raises one operand to the power of another
	B^A will give 49

	+
	Adds two operands
	A + B will give 9

	-
	Subtracts second operand from the first
	A - B will give -5

	*
	Multiplies both operands
	A * B will give 14

	/
	Divides one operand by another and returns a floating point result
	B / A will give 3.5

	\
	Divides one operand by another and returns an integer result
	B \ A will give 3

	MOD
	Modulus Operator and remainder of after an integer division

	

Comparison Operators
Following table shows all the comparison operators supported by VB.Net. Assume variable A holds 10 and variable B holds 20, then:
Show Examples
	Operator
	Description
	Example

	=
	Checks if the values of two operands are equal or not; if yes, then condition becomes true.
	(A = B) is not true.

	<>
	Checks if the values of two operands are equal or not; if values are not equal, then condition becomes true.
	(A <> B) is true.

	>
	Checks if the value of left operand is greater than the value of right operand; if yes, then condition becomes true.
	(A > B) is not true.

	<
	Checks if the value of left operand is less than the value of right operand; if yes, then condition becomes true.
	(A < B) is true.

	>=
	Checks if the value of left operand is greater than or equal to the value of right operand; if yes, then condition becomes true.
	(A >= B) is not true.

	<=
	Checks if the value of left operand is less than or equal to the value of right operand; if yes, then condition becomes true.
	(A <= B) is true.

Assignment Operators
There are following assignment operators supported by VB.Net:
Show Examples
	Operator
	Description
	Example

	=
	Simple assignment operator, Assigns values from right side operands to left side operand
	C = A + B will assign value of A + B into C

	+=
	Add AND assignment operator, It adds right operand to the left operand and assigns the result to left operand
	C += A is equivalent to C = C + A

	-=
	Subtract AND assignment operator, It subtracts right operand from the left operand and assigns the result to left operand
	C -= A is equivalent to C = C - A

	*=
	Multiply AND assignment operator, It multiplies right operand with the left operand and assigns the result to left operand
	C *= A is equivalent to C = C * A

	/=
	Divide AND assignment operator, It divides left operand with the right operand and assigns the result to left operand (floating point division)
	C /= A is equivalent to C = C / A

	\=
	Divide AND assignment operator, It divides left operand with the right operand and assigns the result to left operand (Integer division)
	C \= A is equivalent to C = C \A

	^=
	Exponentiation and assignment operator. It raises the left operand to the power of the right operand and assigns the result to left operand.
	C^=A is equivalent to C = C ^ A

	<<=
	Left shift AND assignment operator
	C <<= 2 is same as C = C << 2

	>>=
	Right shift AND assignment operator
	C >>= 2 is same as C = C >> 2

	&=
	Concatenates a String expression to a String variable or property and assigns the result to the variable or property.
	Str1 &= Str2 is same as
Str1 = Str1 & Str2

Decision Making
Decision making structures require that the programmer specify one or more conditions to be evaluated or tested by the program, along with a statement or statements to be executed if the condition is determined to be true, and optionally, other statements to be executed if the condition is determined to be false.
Following is the general form of a typical decision making structure found in most of the programming languages:
[image: Decision making statements in VB.Net]
VB.Net provides the following types of decision making statements. Click the following links to check their details.
	Statement
	Description

	If ... Then statement
	An If...Then statement consists of a boolean expression followed by one or more statements.

	If...Then...Else statement
	An If...Then statement can be followed by an optional Else statement, which executes when the boolean expression is false.

	nested If statements
	You can use one If or Else if statement inside another If or Else if statement(s).

	Select Case statement
	A Select Case statement allows a variable to be tested for equality against a list of values.

	nested Select Case statements
	You can use one select case statement inside another select case statement(s).

If Then Else
Info:We see if the user typed "1" or "2" and pressed return. We also display the output.
VB.NET program that uses ReadLine

Module Module1
 Sub Main()
	While True

	 ' Read value.
	 Dim s As String = Console.ReadLine()

	 ' Test the value.
	 If s = "1" Then
		Console.WriteLine("One")
	 ElseIf s = "2" Then
		Console.WriteLine("Two")
	 End If

	 ' Write the value.
	 Console.WriteLine("You typed " + s)

	End While
 End Sub
End Module

Output

1
One
You typed 1
2
Two
You typed 2
3
You typed 3
Example:
Module decisions
 Sub Main()
 Dim a As Integer = 100
 If (a = 10) Then
 Console.WriteLine("Value of a is 10")
 ElseIf (a = 20) Then
 Console.WriteLine("Value of a is 20")
 ElseIf (a = 30) Then
 Console.WriteLine("Value of a is 30")
 Else
 Console.WriteLine("None of the values is matching")
 End If
 Console.WriteLine("Exact value of a is: {0}", a)
 Console.ReadLine()
 End Sub
End Module
When the above code is compiled and executed, it produces the following result:
None of the values is matching
Exact value of a is: 100

VB.Net - Select Case Statement
A Select Case statement allows a variable to be tested for equality against a list of values. Each value is called a case, and the variable being switched on is checked for each select case.
Syntax:
The syntax for a Select Case statement in VB.Net is as follows:
Select [Case] expression
 [Case expressionlist
 [statements]]
 [Case Else
 [elsestatements]]
End Select
Where,
· expression: is an expression that must evaluate to any of the elementary data type in VB.Net, i.e., Boolean, Byte, Char, Date, Double, Decimal, Integer, Long, Object, SByte, Short, Single, String, UInteger, ULong, and UShort.
· expressionlist: List of expression clauses representing match values for expression. Multiple expression clauses are separated by commas.
· statements: statements following Case that run if the select expression matches any clause in expressionlist.
· elsestatements: statements following Case Else that run if the select expression does not match any clause in the expressionlist of any of the Case statements.
Flow Diagram:
[image: select case statement in VB.Net]
Example:
Module Module1
 Sub Main()

Dim grade As Char
 Console.writeline(“Enter Grade”)
 grade = CChar(console.readline())
 Select grade
 Case "A"
 Console.WriteLine("Excellent!")
 Case "B", "C"
 Console.WriteLine("Well done")
 Case "D"
 Console.WriteLine("You passed")
 Case "F"
 Console.WriteLine("Better try again")
 Case Else
 Console.WriteLine("Invalid grade")
 End Select
 Console.WriteLine("Your grade is " & grade)
 Console.ReadLine()
 End Sub
End Module
When the above code is compiled and executed, it produces the following result:
Well done
Your grade is B

Example Program - Boolean operators - NOT, AND, OR
Module Module1
Sub Main()
Dim age, points As Integer
Console.WriteLine("What is your age?")
age = Int(Console.ReadLine())
Console.WriteLine("How many points do you have on your licence?")
points = Int(Console.ReadLine())
If age > 16 And points < 9 Then
Console.WriteLine("You can drive!")
Else
Console.WriteLine("You are not eligable for a driving licence")
End If
Console.ReadKey()
End Sub
End Modul
Loops
There may be a situation when you need to execute a block of code several number of times. In general, statements are executed sequentially: The first statement in a function is executed first, followed by the second, and so on.
Programming languages provide various control structures that allow for more complicated execution paths.
A loop statement allows us to execute a statement or group of statements multiple times and following is the general form of a loop statement in most of the programming languages:
[image: Loop Architecture]
VB.Net provides following types of loops to handle looping requirements. Click the following links to check their details.
	Loop Type
	Description

	Do Loop
	It repeats the enclosed block of statements while a Boolean condition is True or until the condition becomes True. It could be terminated at any time with the Exit Do statement.

	For...Next
	It repeats a group of statements a specified number of times and a loop index counts the number of loop iterations as the loop executes.

	For Each...Next
	It repeats a group of statements for each element in a collection. This loop is used for accessing and manipulating all elements in an array or a VB.Net collection.

	While... End While
	It executes a series of statements as long as a given condition is True.

	With... End With
	It is not exactly a looping construct. It executes a series of statements that repeatedly refer to a single object or structure.

	Nested loops
	You can use one or more loops inside any another While, For or Do loop.

Loop Control Statements:
Loop control statements change execution from its normal sequence. When execution leaves a scope, all automatic objects that were created in that scope are destroyed.
VB.Net provides the following control statements. Click the following links to check their details.
	Control Statement
	Description

	Exit statement
	Terminates the loop or select case statement and transfers execution to the statement immediately following the loop or select case.

	Continue statement
	Causes the loop to skip the remainder of its body and immediately retest its condition prior to reiterating.

	GoTo statement
	Transfers control to the labeled statement. Though it is not advised to use GoTo statement in your program.

Module loops
 Sub Main()
 ' local variable definition
 Dim a As Integer = 10
 'do loop execution
 Do
 Console.WriteLine("value of a: {0}", a)
 a = a + 1
 Loop Until (a = 20)
 Console.ReadLine()
 End Sub
End Module

Module loops
 Sub Main()
 Dim a As Byte
 ' for loop execution
 For a = 10 To 20
 Console.WriteLine("value of a: {0}", a)
 Next
 Console.ReadLine()
 End Sub
End Module

Module loops
 Sub Main()
 Dim a As Integer = 10
 ' while loop execution '
 While a < 20
 Console.WriteLine("value of a: {0}", a)
 a = a + 1
 End While
 Console.ReadLine()
 End Sub
End Module
Nested Loops
Example:
The following program uses a nested for loop to find the prime numbers from 2 to 100:
Module loops
 Sub Main()
 ' local variable definition
 Dim i, j As Integer
 For i = 2 To 100
 For j = 2 To i
 ' if factor found, not prime
 If ((i Mod j) = 0) Then
 Exit For
 End If
 Next j
 If (j > (i \ j)) Then
 Console.WriteLine("{0} is prime", i)
 End If
 Next i
 Console.ReadLine()
 End Sub
End Module
When the above code is compiled and executed, it produces the following result:
2 is prime
3 is prime
5 is prime
7 is prime
11 is prime
13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime

Arrays
An array stores a fixed-size sequential collection of elements of the same type. An array is used to store a collection of data, but it is often more useful to think of an array as a collection of variables of the same type.
All arrays consist of contiguous memory locations. The lowest address corresponds to the first element and the highest address to the last element.
[image: Arrays in VB.Net]
Creating Arrays in VB.Net
To declare an array in VB.Net, you use the Dim statement. For example,
Dim intData(30)	 ' an array of 31 elements
Dim strData(20) As String	' an array of 21 strings
Dim twoDarray(10, 20) As Integer	'a two dimensional array of integers
Dim ranges(10, 100)	 'a two dimensional array
You can also initialize the array elements while declaring the array. For example,
Dim intData() As Integer = {12, 16, 20, 24, 28, 32}
Dim names() As String = {"Karthik", "Sandhya", _
"Shivangi", "Ashwitha", "Somnath"}
Dim miscData() As Object = {"Hello World", 12d, 16ui, "A"c}
The elements in an array can be stored and accessed by using the index of the array. The following program demonstrates this:
Module arrayApl
 Sub Main()
 Dim n(10) As Integer ' n is an array of 11 integers '
 Dim i, j As Integer
 ' initialize elements of array n '
 For i = 0 To 10
 n(i) = i + 100 ' set element at location i to i + 100
 Next i
 ' output each array element's value '
 For j = 0 To 10
 Console.WriteLine("Element({0}) = {1}", j, n(j))
 Next j
 Console.ReadKey()
 End Sub
End Module
When the above code is compiled and executed, it produces the following result:
Element(0) = 100
Element(1) = 101
Element(2) = 102
Element(3) = 103
Element(4) = 104
Element(5) = 105
Element(6) = 106
Element(7) = 107
Element(8) = 108
Element(9) = 109
Element(10) = 110
Dynamic Arrays
Dynamic arrays are arrays that can be dimensioned and re-dimensioned as par the need of the program. You can declare a dynamic array using the ReDimstatement.
Syntax for ReDim statement:
ReDim [Preserve] arrayname(subscripts)
Where,
· The Preserve keyword helps to preserve the data in an existing array, when you resize it.
· arrayname is the name of the array to re-dimension.
· subscripts specifies the new dimension.
Module arrayApl
 Sub Main()
 Dim marks() As Integer
 ReDim marks(2)
 marks(0) = 85
 marks(1) = 75
 marks(2) = 90
 ReDim Preserve marks(10)
 marks(3) = 80
 marks(4) = 76
 marks(5) = 92
 marks(6) = 99
 marks(7) = 79
 marks(8) = 75
 For i = 0 To 10
 Console.WriteLine(i & vbTab & marks(i))
 Next i
 Console.ReadKey()
 End Sub
End Module
When the above code is compiled and executed, it produces the following result:
0	85
1	75
2	90
3	80
4	76
5	92
6	99
7	79
8	75
9	0
10	0

re-release material May/June 2015
Here is a copy of the pre-release material
Task1
A school keep records of the weights of each pupil. The weight in kilograms of each
pupil is recorded on the first day of term. Input and store the weights and names
recorded for a class of 30 pupils. You must store the weights in a one-dimensional array
and the names in another one-dimensional array. All the weights must be validated on
entry and any invalid weights rejected. You must decide your own validation rules. You
must assumethatthepupilsnamesareunique.Outputthenamesandweightsofthepupilsin the
class.
Task2
The weight in kilograms of each pupil is recorded again
onthelastdayofterm.Calculateandstorethedifferenceinweightforeachpupil.
Task3
Forthosepupilswhohaveadifferenceinweightofmorethan2.5kilograms,output,
withasuitablemessage,thepupil’sname,thedifferenceinweightandwhetherthisis rise or a
fall. Your program must include appropriate prompts for the entry of data.
Errormessagesandotheroutputsneedtobesetoutclearlyandunderstandably.All variables,
constants and other identifiers must have meaningful names. Each task must be fully
tested.
Coding for the given tasks
Module Module1
Sub Main()
Dim Name(30) As String
Dim Count As Integer
Dim Weight1(30) As Single
Const Upper_Limit As Single = 500
Const Lower_Limit As Single = 5
'Task 1
	For Count = 1 To 30

	Console.WriteLine("Student No. : "& Count)
	Console.Write("Enter name : ")
	Name(Count) = Console.ReadLine()
	Console.Write("Enter Weight at day 1 of term ")
	Weight1(Count) = Console.ReadLine()

	'Validation Check for Weight
	While Weight1(Count) < Lower_Limit Or Weight1(Count) > Upper_Limit
	Console.WriteLine("Error: Invalid weight. It must be between 5 and 500")
	Console.Write("Re-enter weight on first day ")
	Weight1(Count) = Console.ReadLine()
	EndWhile
	
	Next

	'For Displaying list of name and weight of students
	For Count = 1 To 5
	Console.WriteLine(Name(Count) &" "& Weight1(Count))
	Next
‘Task 2
	Dim weight2(30), Weight_Difference(30) AsSingle
	For Count = 1 To 30
	Console.WriteLine(Count & " " & Name(Count) & " " & Weight1(Count))
	Console.Write("Enter weight on last day ")
	weight2(Count) = Console.ReadLine()
	'Validation Check for Weight
	While weight2(Count) < Lower_Limit Or weight2(Count) > Upper_Limit
	Console.WriteLine("Error: Invalid weight. It must be between 5 and 500")
	Console.Write("Re-enter weight on lastt day ")
	weight2(Count) = Console.ReadLine()
	EndWhile
	Weight_Difference(Count) = weight2(Count) - Weight1(Count)
Next
'Task 3
	For Count = 1 To 30
	If Weight_Difference(Count) > 2.5 Then
	Console.WriteLine(Name(Count) & " has a rise in weight of " & Weight_Difference(Count) & " kg")
	ElseIf Weight_Difference(Count) < -2.5 Then
	Console.WriteLine(Name(Count) &" has a fall in weight of "& Weight_Difference(Count) &" kg")
	EndIf
	Next
Console.ReadKey()
EndSub
EndModule
Pre-release material
A teacher needs a program to record marks for a class of 30 students who have sat three computer
science tests.
Write and test a program for the teacher.
• Your program must include appropriate prompts for the entry of data.
• Error messages and other output need to be set out clearly and understandably.
• All variables, constants and other identifiers must have meaningful names.
You will need to complete these three tasks. Each task must be fully tested.
	TASK 1 – Set up arrays
Set-up one dimensional arrays to store:
• Student names
• Student marks for Test 1, Test 2 and Test 3
o Test 1 is out of 20 marks
o Test 2 is out of 25 marks
o Test 3 is out of 35 marks
• Total score for each student
Input and store the names for 30 students. You may assume that the students’ names are unique.
Input and store the students’ marks for Test 1, Test 2 and Test 3. All the marks must be validated on
entry and any invalid marks rejected.
	TASK 2 – Calculate
Calculate the total score for each student and store in the array.
Calculate the average total score for the whole class.
Output each student’s name followed by their total score.
Output the average total score for the class.
	TASK 3 – Select
Select the student with the highest total score and output their name and total score.

Following are the questions and pseudocodes from chapter 10 of your book, make their Visual Basic programs. (A sample VB program is given for question no. 8)

Q1: Show two ways of selecting different actions using Pseudocode.
Ans:
Pseudocode

If Condition
Begin
Input marks
 If marks >= 60
Then	Print "passed"
Else	Print "failed"
End If
End
Case Statement
Begin
Input Marks

Case Marks of
 Case =100
 Print “Perfect Score”
 Case > 89
 Print “Grade = A”
 Case > 79
 Print “Grade = B”
 Case > 69
 Print “Grade = C”
 Case > 59
 	Print “Grade = D”
 Otherwise
 Print “Grade = F”
End Case
End
Or

Begin
Input grade
CASE grade OF
 “A” : points = 4
 “B” : points = 3
 “C” : points = 2
 “D” : points = 1
 “F” : points = 0
		Otherwise : print “ invalid grade”
 ENDCASE
Output points
End

Q: Input two numbers and a mathematical symbol from user and output total.
· Total should be the sum of two numbers if the mathematical symbol is “+”
· Total should be the difference of two numbers if the mathematical symbol is “-”
· Total should be the product of two numbers if the mathematical symbol is “*”
· Total should be the coefficient of two numbers if the mathematical symbol is “/”
· Else display “invalid operator”
Pseudocode
Begin
Input num1, num2, symbol
CASE symbol OF
 “+” : total = num1 + num2
 “-” : total = num1 - num2
		“*” : total = num1 * num2
		“/” : total = num1 / num2
		otherwise : print “Invalid symbol”
 ENDCASE
Output total
End

Q2: You have been asked to choose the correct routine from the menu shown below.
a) Decide which type of conditional statement are you going to you use.
b) Explain your choice.
c) Write the Pseudocode
d) Select your test data and explain why you choose each value.
Answer:
a) I am using Case Statement
b) because it is very simple and relevant to use in the given scenario.
c) Pseudocode:
Pseudocode
Begin
Input Choice
Case Choice of
	1 : SetUpNewAccount;
	2 : MakeChangesToAnExistingAccount;
	3: CloseAnAccount;
4 : ViewMyOrders;
5 : PlaceANewOrder;
6 : AlterAnExistingOrder;
0 : Exit;
H : Help;
End Case
End
Q3: Show three ways to use a loop to add up five numbers and print out the total can be set up using Pseudocode. Explain which loop is the most efficient to use.
Pseudocode
Answer:
There are three different loop structures that we can use to add five numbers.
1)
2) By Using For Loop
Begin
Sum=0
For Count = 1 to 5
Input Num
Sum = Sum + Num
Next Count
Output “Total = ”, Sum
End
3) By Using Repeat Until Loop
Begin
Sum=0
Count = 0
Repeat
Input Num
Sum = Sum + Num
Count = Count + 1
Until Count = 5
Output “Total = ”, Sum
End
4) By Using While Do EndWhile Loop
Begin
Sum=0
Count = 0
While Count < 5 Do
Input Num
Sum = Sum + Num
Count = Count + 1
EndWhile
Output “Total = ”, Sum
End

Q4: A sweets shop sells five hundred different types of sweets. Each sort of sweet is identified by a different four digit code. All sweets that start with 1 are Chocolates, All sweets that start with 2 are toffees, All sweets that start with 3 are jellies and all other sweets are miscellaneous and can start with any other digit except zero.
a) Write an algorithm, using a flowchart or Pseudocode which input the four digit code for all 500 items and output the number of chocolates, toffees and jellies.
b) Explain how you would test your flow chart.
c) Decide the test data to use and complete a trace table showing a dry run of your flow chart.
Answer:
Pseudocode

Begin
TotalChocolate = 0
TotalToffees = 0
TotalJellies = 0
For Count = 1 to 500
Input Code
If 	Code >= 1000 And Code <=1999
Then 	TotalChocolate = TotalChocolate + 1
Else
	If 	Code >= 2000 And Code <=2999
Then 	TotalToffees = TotalToffees + 1
Else
		If 	Code >= 3000 And Code <=3999
Then 	TotalJellies = TotalJellies + 1
	End If
End If
End If
Next Count
Output “Total Number Of Chocolates :” , TotalChocolate
Output “Total Number Of Toffees :” , TotalToffees
Output “Total Number Of Jellies :” , TotalJellies
End

Q5: The temperature in an apartment must be kept between 18⁰C and 20⁰C. If the temperature reaches 22⁰C then the fan is switched On; If the temperature reaches 16⁰C then the heater is switched On; otherwise the fan and the heater are switched Off. The following library routines are available:
· GetTemperature
· FanOn
· FanOff
· HeaterOn
· HeaterOff
Write an algorithm using Pseudocode or flow chart, to keep the temperature at the right level.
Pseudocode
Begin
Temperature = GetTemperature;

If 	Temperature >= 22
Then 	FanOn;
Else
	If 	Temperature <= 16
Then 	HeaterOn;
Else
		FanOff;
		HeaterOff;
End If
End If
End
Q6: Daniel lives in Italy and travels to Mexico, India and New Zealand. The time difference are:
	Country
	Hours
	Minutes

	Mexico
	-7
	0

	India
	+4
	+30

	New Zealand
	+11
	0

Thus, If it is 10:15 in Italy it will be 14:45 in India.
a) Write an algorithm which:
· Inputs the name of the country
· Inputs the time in Italy in hours and in minutes
· Calculate the time in the country input using the data from the table
· Output the country and the time in hours and in minutes.
b) Describe with examples two sets of test data you would use to test your algorithm.
a)
Begin
Input Country, Hours, Minutes
If 	Country = “Mexico”
Then 	Hours = Hours - 7
Else
	If 	Country = “India”
Then 	Hours = Hours + 4
	Minutes = Minutes + 30
	If Minutes > = 60
	Minutes = Minutes – 60
	Hours = Hours + 1
	End If
Else
		If 	Country = “New Zealand”
Then 	Hours = Hours + 11
End If
End If
End If
End
Q7: A school is doing a check on the heights and weights of the students. The school has 1000 students. Write a Pseudocode and program in VB, which:
· Input height and weight of all 1000 students
· Output the average height and weight
· Include any necessary error traps for the input
Pseudocode
Begin
TotalWeight =0
TotalHeight =0
For x= 1 to 1000
Repeat
Input height, weight
Until (height > 30) and (height < 80) and (weight > 30) and (weight < 100)
TotalWeight = TotalWeight + weight
TotalHeight = TotalHeight + height
Next
AverageHeight = TotalHeight / 1000
AverageWeight = TotalWeight / 1000
Output “ Average height of the students is : ”, AverageHeight
Output “ Average weight of the students is : ”, AverageWeight
End	

Q8: A small café sells five types of items:
Bun				$0.50
Coffee 				$1.20
Cake				$1.50
Sandwich			$2.10
Dessert			$4.00
Write a program, which
· Input every item sold during the day
· Uses an item called “end” to finish the day’s input
· Adds up the daily amount taken for each type of item
· Outputs the total takings (for all items added together) at the end of the day
· Output the item that had the highest takings at the end of the day
Pseudocode
Begin
Tbun =0
Tcoffee =0
 Tcake =0
 Tsandwich = 0
 Tdessert =0
HighestTaking = 0
Repeat
Input Item, quantity
Case Item of
 “bun” :		Tbun = Tbun + quantity
 “coffee” : 	Tcoffee = Tcoffee + quantity
 “cake” : 	Tcake = Tcake + quantity
 “sandwich” : 	Tsandwich = Tsandwich + quantity
 “dessert” : 	Tdessert = Tdessert + quantity
	Otherwise 	Output “ Enter relevant product ”
End Case
Until Item = “End”
TotalTakings = Tbun + Tcoffee + Tcake + Tsandwich + Tdessert
Output	“The total takings of the whole day” , TotalTakings

If (Tbun > HighestTaking) Then
HighestTaking = Tbun
	Item = “Bun”
End If
If (Tcoffee > HighestTaking) Then
HighestTaking = Tcoffee
	Item = “Coffee”
End If
If (Tcake > HighestTaking) Then
HighestTaking = Tcake
	Item = “Cake”
End If
If (Tsandwich > HighestTaking) Then
HighestTaking = Tsandwich
	Item = “Sandwich”
End If
If (Tdessert > HighestTaking) Then
HighestTaking = Tdessert
	Item = “Dessert”
End If
Output	“The item which has the highest sales today is : ” , Item
End

VB program
Module Module1
Sub Main()
Dim Tbun, Tcoffee, Tcake, Tsandwich, Tdessert, quantity, TotalTakings, HighestTaking As Integer
Tbun =0
Tcoffee =0
 Tcake =0
 Tsandwich = 0
 Tdessert =0
Dim Item As String
Do
Console.writeline (“Enter the item in lower case only”)
Item = console.readline()
Console.writeline (“Enter its quantity”)
quantity = Int(console.readline())
Select Item
	Case “bun”
		Tbun = Tbun + quantity
Case “coffee”
		Tcoffee = Tcoffee + quantity
	Case “cake”
		Tcake = Tcake + quantity
Case “sandwich”
		Tsandwich = Tsandwich + quantity
	Case “dessert”
		Tdessert = Tdessert + quantity
	Case Else
		Console.writeline(“ Enter relevant product ”)
End Select
Loop Until (Item = “End”)
TotalTakings = Tbun + Tcoffee + Tcake + Tsandwich + Tdessert
Console.writeline(“The total takings of the whole day” & TotalTakings)
If (Tbun > HighestTaking) Then
HighestTaking = Tbun
	Item = “Bun”
End If
If (Tcoffee > HighestTaking) Then
HighestTaking = Tcoffee
	Item = “Coffee”
End If
If (Tcake > HighestTaking) Then
HighestTaking = Tcake
	Item = “Cake”
End If
If (Tsandwich > HighestTaking) Then
HighestTaking = Tsandwich
	Item = “Sandwich”
End If
If (Tdessert > HighestTaking) Then
HighestTaking = Tdessert
	Item = “Dessert”
End If
Console.writeline(“The item which has the highest sales today is : ” & Item)
Console.readkey()
End Sub
End Module

Q9: 5000 numbers are being input which should have either one digit, two digits, three digits or four digits. Write an algorithm which:
· Input 5000 numbers
· Output how many numbers have one digit, two digits, three digits and four digits.
· Output the percentage of numbers which were outside the range.
Pseudocode
Begin
OneDigit = 0
TwoDigit = 0
ThreeDigit = 0
FourDigit = 0
OutSide = 0
For Count = 1 to 500
Input Number
If 	Number >= 0 And Number <=9
Then 	OneDigit = OneDigit + 1
Else
	If 	Number >= 10 And Number <=99
Then 	TwoDigit = TwoDigit + 1
Else
		If 	Number >= 100 And Number <=999
Then 	ThreeDigit = ThreeDigit + 1
Else
If 	Number >= 1000 And Number <=9999
Then 	FourDigit = FourDigit + 1
Else
	OutSide = OutSide + 1
End If
	End If
End If
End If
Next Count
Percentage = OutSide / 5000 * 100
Output “Total Number Of One Digit Numbers :” , OneDigit
Output “Total Number Of Two Digit Numbers :” , TwoDigit
Output “Total Number Of Three Digit Numbers :” , ThreeDigit
Output “Total Number Of Four Digit Numbers :” , FourDigit
Output “Percentage of numbers outside the range” , Percentage
End

image2.jpeg
case 1

code block 1
case 2
cased code block 3
default

code block N

image3.jpeg
nal Code

A

If condition
is true

If condition
is false

image4.jpeg
HISLEeTneIt Last Element

l l

Numbers{0] | Numbers{1] | Numbers(2] | Numbers[3]

image1.jpeg
If condition If condition
is true is false

conditional Y
code

